1
|
Kong Weijia: Research progress of senile
deafness. Chinese Medical Abstracts. 159–160. 2010.(In
Chinese).
|
2
|
Viveki RG, Halappanavar AB, Joshi AV,
Pujar K and Patil S: Sociodemographic and health profile of inmates
of old age homes in and around Belgaum city, Karnataka. J Indian
Med Assoc. 111:682–685. 2013.PubMed/NCBI
|
3
|
Vas V, Akeroyd MA and Hall DA: A
Data-Driven Synthesis of Research Evidence for Domains of Hearing
Loss, as Reported by Adults With Hearing Loss and Their
Communication Partners. Trends Hear. 573–576. 2017.
|
4
|
Gates GA, Caspary DM, Clark W, Pillsbury
HC, Brown SC and Dobie RA: Presbycusis. Otolaryngol Head Neck Surg.
100:1989. View Article : Google Scholar
|
5
|
Spicer SS and Schulte BA: Pathologic
changes of presbycusis begin in secondary processes and spread to
primary processes of strial marginal cells. Hear Res. 205:225–240.
2005. View Article : Google Scholar : PubMed/NCBI
|
6
|
Shi X: Pathophysiology of the cochlear
intrastrial fluid-blood barrier (review). Hear Res. 338:52–63.
2016. View Article : Google Scholar : PubMed/NCBI
|
7
|
Kikuchi T, Kimura RS, Paul DL, Takasaka T
and Adams JC: Gap junction systems in the mammalian cochlea. Brain
Res Brain Res Rev. 32:163–166. 2000. View Article : Google Scholar : PubMed/NCBI
|
8
|
Forge A and Wright T: The molecular
architecture of the inner ear. Br Med Bull. 63:5–24. 2002.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Forge A, Becker D, Casalotti S, Edwards J,
Marziano N and Nickel R: Connexins and gap junctions in the inner
ear. Audiol Neurootol. 7:141–145. 2002. View Article : Google Scholar : PubMed/NCBI
|
10
|
Spicer SS and Schulte BA: Novel structures
in marginal and intermediate cells presumably relate to functions
of apical versus basal strial strata. Hear Res. 200:87–101. 2005.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Shi X: Physiopathology of the cochlear
microcirculation. Hear Res. 282:10–24. 2011. View Article : Google Scholar : PubMed/NCBI
|
12
|
Shi X, Han W, Yamamoto H, Tang W, Lin X,
Xiu R, Trune DR and Nuttall AL: The cochlear pericytes.
Microcirculation. 15:515–529. 2008. View Article : Google Scholar : PubMed/NCBI
|
13
|
Betsholtz C, Lindblom P and Gerhardt H:
Role of pericytes in vascular morphogenesis. EXS. 115–125.
2005.PubMed/NCBI
|
14
|
Thomas WE: Brain macrophages: On the role
of pencytes and perivascular cells. Brain Res Brain Res Rev.
31:42–57. 1999. View Article : Google Scholar : PubMed/NCBI
|
15
|
Kurz H, Fehr J, Nitschke R and Burkhardt
H: Pericytes in the mature chorioallantoic membrane capillary
plexus contain desmin and alpha-smooth muscle actin: Relevance for
non-sprouting angiogenesis. Histochem Cell Biol. 130:1027–1040.
2008. View Article : Google Scholar : PubMed/NCBI
|
16
|
Peppiatt CM, Howarth C, Mobbs P and
Attwell D: Bidirectional control of CNS capillary diameter by
pericytes. Nature. 443:700–704. 2006. View Article : Google Scholar : PubMed/NCBI
|
17
|
Oishi K, Kamiyashiki T and Ito Y:
Isometric contraction of microvascular pericytes from mouse brain
parenchyma. Microvasc Res. 73:20–28. 2007. View Article : Google Scholar : PubMed/NCBI
|
18
|
Hall CN, Reynell C, Gesslein B, Hamilton
NB, Mishra A, Sutherland BA, O'Farrell FM, Buchan AM, Lauritzen M
and Attwell D: Capillary pericytes regulate cerebral blood flow in
health and disease. Nature. 508:55–60. 2014. View Article : Google Scholar : PubMed/NCBI
|
19
|
Greenhalgh SN, Iredale JP and Henderson
NC: Origins of fibrosis: Pericytes take centre stage. F1000Prime
Rep. 5:372013. View
Article : Google Scholar : PubMed/NCBI
|
20
|
Liu S, Agalliu D, Yu C and Fisher M: The
role of pericytes in blood-brain barrier function and stroke. Curr
Pharm Des. 18:3653–3662. 2012. View Article : Google Scholar : PubMed/NCBI
|
21
|
Greif DM and Eichmann A: Vascular biology:
Brain vessels squeezed to death. Nature. 508:50–51. 2014.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Puro DG: Physiology and pathobiology of
the pericyte-containing retinal microvasculature: New developments.
Microcirculation. 14:1–10. 2007. View Article : Google Scholar : PubMed/NCBI
|
23
|
Rickheit G, Maier H, Strenzke N, Andreescu
CE, De Zeeuw CI, Muenscher A, Zdebik AA and Jentsch TJ:
Endocochlear potential depends on Cl- channels: Mechanism
underlying deafness in Bartter syndrome IV. EMBO J. 27:2907–2917.
2008. View Article : Google Scholar : PubMed/NCBI
|
24
|
Wang Li and Zhang Hailing: Progress in
research on function and molecular basis of Ca2+
activated Cl− channel. Chin J Cell Biol. 477–484.
2012.(In Chinese).
|
25
|
Caputo A, Caci E, Ferrera L, Pedemonte N,
Barsanti C, Sondo E, Pfeffer U, Ravazzolo R, Zegarra-Moran O and
Galietta LJ: TMEM16A, a membrane protein associated with
calcium-dependent chloride channel activity. Science. 322:590–594.
2008. View Article : Google Scholar : PubMed/NCBI
|
26
|
Schroeder BC, Cheng T, Jan YN and Jan LY:
Expression cloning of TMEM16A as a calcium-activated chloride
channel subunit. Cell. 134:1019–1029. 2008. View Article : Google Scholar : PubMed/NCBI
|
27
|
Hartzell HC, Yu K, Xiao Q, Chien LT and Qu
Z: Anoctamin/TMEM16 family members are Ca2+-activated Cl- channels.
J Physiol. 587:2127–2139. 2009. View Article : Google Scholar : PubMed/NCBI
|
28
|
Scudieri P, Sondo E, Ferrera L and
Galietta LJ: The anoctamin family: TMEM16A and TMEM16B as
calcium-activated chloride channels. Exp Physiol. 97:177–183. 2012.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Bernstein K, Vink JY, Fu XW, Wakita H,
Danielsson J, Wapner R and Gallos G: Calcium-activated chloride
channels anoctamin 1 and 2 promote murine uterine smooth muscle
contractility. Am J Obstet Gynecol. 211:688.e1–e10. 2014.
View Article : Google Scholar
|
30
|
Manoury B, Tamuleviciute A and Tammaro P:
TMEM16A/Anoctamin 1 protein mediates calcium-activated chloride
currents in pulmonary arterial smooth muscle cells. J Physiol.
588:2305–2314. 2010. View Article : Google Scholar : PubMed/NCBI
|
31
|
Song J, Wang Y, Liu YH, Ma KT, Li L and
Jun-Qiang S: The expression of transmembrane protein 16A in guinea
pig cochlea increased with years. J Xi'an Jiaotong Univ (Medical
Sciences). 38:796–802. 2017.
|
32
|
Jin X, Shah S, Liu Y, Zhang H, Lees M, Fu
Z, Lippiat JD, Beech DJ, Sivaprasadarao A, Baldwin SA, et al:
Activation of the Cl- channel ANO1 by localized calcium signals in
nociceptive sensory neurons requires coupling with the IP3
receptor. Sci Signal. 6:ra732013. View Article : Google Scholar : PubMed/NCBI
|
33
|
Henkel B, Drose DR, Ackels T, Oberland S,
Spehr M and Neuhaus EM: Co-expression of anoctamins in cilia of
olfactory sensory neurons. Chem Senses. 40:73–87. 2015. View Article : Google Scholar : PubMed/NCBI
|
34
|
Dauner K, Möbus C, Frings S and Möhrlen F:
Targeted expression of anoctamin calcium-activated chloride
channels in rod photoreceptor terminals of the rodent retina.
Invest Ophthalmol Vis Sci. 54:3126–3136. 2013. View Article : Google Scholar : PubMed/NCBI
|
35
|
Wang HC, Lin CC, Cheung R, Zhang-Hooks Y,
Agarwal A, Ellis-Davies G, Rock J and Bergles DE: Spontaneous
activity of cochlear hair cells triggered by fluid secretion
mechanism in adjacent support Cells. Cell. 163:1348–1359. 2015.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Yi E, Lee J and Lee CJ: Developmental role
of Anoctamin-1/TMEM16A in Ca(2+)-dependent volume change in
supporting cells of the mouse cochlea. Exp Neurobiol. 22:322–329.
2013. View Article : Google Scholar : PubMed/NCBI
|
37
|
Gao Y, Tao Y, Chu H, Chen J, Chen Q, Zhou
L, Liu Y, Yu Y and Cui Y: Age-related expression of plasma membrane
Ca(2+)-ATPase isoform 2 in the cochleas of C57BL/6J mice. Zhonghua
Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 50:934–938. 2015.(In
Chinese). PubMed/NCBI
|
38
|
Chen Qiu-jian, Yang Hai-di and Dai
Tian-xing: Conservation of Hearing by Simultaneous Mutation of
Na,K-ATPase and NKCC1. Journal of the Association for Research in
Otolaryngology. 422–434. 2007.PubMed/NCBI
|
39
|
Li JL, Chu HQ, Zhou LQ, Xiong H, Wang Y,
Chen QG, Chen J, Li ZY, Liu Y and Cui YH: Association of
age-related hearing loss with ion transporter KCNQ1 and NKCC1 in
cochlea of C57BL/6J mice. Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za
Zhi. 46:139–143. 2011.(In Chinese). PubMed/NCBI
|
40
|
Liu YH, Zhang ZP, Wang Y, Song J, Ma KT,
Si JQ and Li L: Electrophysiological properties of strial pericytes
and the effect of aspirin on pericyte K+channels. Mol Med Rep.
17:2861–2868. 2018.PubMed/NCBI
|
41
|
Abulfadl YS, El-Maraghy NN, Ahmed AAE,
Nofal S and Badary OA: Protective effects of thymoquinone on
D-galactose and aluminum chloride induced neurotoxicity in rats:
Biochemical, histological and behavioral changes. Neurol Res.
40:324–333. 2018. View Article : Google Scholar : PubMed/NCBI
|
42
|
Olszewski J: Guinea pig as often object to
otoneurological experimental examinations. Otolaryngol Pol.
61:838–841. 2007.(In Polish). View Article : Google Scholar : PubMed/NCBI
|
43
|
Shirpoor A, Norouzi L, Khadem-Ansari MH,
Ilkhanizadeh B and Karimipour M: The protective effect of vitamin E
on morphological and biochemical alteration induced by pre and
postnatal ethanol administration in the testis of male rat
offspring: A three months follow-up study. J Reprod Infertil.
15:134–141. 2014.PubMed/NCBI
|
44
|
Wang Z, Lin Y, Chen W, Shang J and Wei T:
Transplantation of bone marrow mesenchymal stem cell improves
antioxidant capacity and immune activity of aging model rats. Xi
Bao Yu Fen Zi Mian Yi Xue Za Zhi. 33:151–154. 2017.(In Chinese).
PubMed/NCBI
|
45
|
Cai R, Montgomery SC, Graves KA, Caspary
DM and Cox BC: The FBN rat model of aging: Investigation of ABR
waveforms and ribbon synapse changes. Neurobiol Aging. 62:53–63.
2018. View Article : Google Scholar : PubMed/NCBI
|
46
|
Slack JL, Bi W, Livak KJ, Beaubier N, Yu
M, Clark M, Kim SH, Gallagher RE and Willman CL: Pre-clinical
validation of a novel, highly sensitive assay to detect
PML-RARalpha mRNA using real-time reverse-transcription polymerase
chain reaction. J Mol Diagn. 3:141–149. 2001. View Article : Google Scholar : PubMed/NCBI
|
47
|
Zhang M, Gao CX, Wang YP, Ma KT, Li L, Yin
JW, Dai ZG, Wang S and Si JQ: The association between the
expression of PAR2 and TMEM16A and neuropathic pain. Mol Med Rep.
17:3744–3750. 2018.PubMed/NCBI
|
48
|
Manabe N, Kiso M, Shimabe M,
Nakai-Sugimoto N and Miyamoto H: Abnormal accumulation of corpora
lutea in ovaries of the senescence accelerated mouse prone (SAMP1).
Int Cong Series. 1260:179–185. 2004. View Article : Google Scholar
|
49
|
Hongliang and Fangsheng: Three different
methods for establishing mouse aging models. Chinese gerontology.
30:2607–2608. 2010.(In Chinese).
|
50
|
Zhou Yuel, Wang Yapin, Wang Jian wei, et
al: Effects of sirtuin 1 in positive regulation of ginsenoside Rg1
on hematopoietic stem cell and progenitor cell senescence in vivo.
Chinese Journal of Anatomy. 39:5–9. 2016.(In Chinese).
|
51
|
Ling Xin, Li Wen Li, Hai, Chun xu, et al:
Oxidative damage which caused by γ-rays promotes agingγ.
Carcinogenesis Distortion Mutation. 22:335–338. 2010.
|
52
|
Zhu YZ and Zhu HG: Establishment and
measurement of D-galactose induced aging model. Fudan Univ J Med
Sci. 34:617–619. 2007.
|
53
|
Wang Q, Zou L, Liu W, Hao W, Tashiro S,
Onodera S and Ikejima T: Inhibiting NF-κB activation and ROS
production are involved in the mechanism of silibinin's protection
against D-galactose-induced senescence. Pharmacol Biochem Behav.
98:140–149. 2011. View Article : Google Scholar : PubMed/NCBI
|
54
|
Ni C, Zhang D, Beyer LA, Halsey KE, Fukui
H, Raphael Y, Dolan DF and Hornyak TJ: Hearing dysfunction in
heterozygous Mitf(Mi-wh)/+ mice, a model for Waardenburg syndrome
type 2 and Tietz syndrome. Pigment Cell Melanoma Res. 26:78–87.
2013. View Article : Google Scholar : PubMed/NCBI
|
55
|
Tan WJT, Song L, Graham M, Schettino A,
Navaratnam D, Yarbrough WG, Santos-Sacchi J and Ivanova AV: Novel
role of the mitochondrial protein Fus1 in protection from premature
hearing loss via regulation of oxidative stress and nutrient and
energy sensing pathways in the inner ear. Antioxid Redox Signal.
27:489–509. 2017. View Article : Google Scholar : PubMed/NCBI
|
56
|
Nuttall HE, Moore DR, Barry JG, et al: The
influence of cochlear spectral processing on the timing and
amplitude of the speech-evoked auditory brain stem response[J].
Journal of Neurophysiology, 2015. 113(10): 3683–3691. 2015.
|
57
|
Muniak MA, Ayeni FE and Ryugo DK: Hidden
hearing loss and endbulbs of Held: Evidence for central pathology
before detection of ABR threshold increases. Hear Res. 364:104–117.
2018. View Article : Google Scholar : PubMed/NCBI
|
58
|
Konrad-Martin D, Dille MF, McMillan G,
Griest S, McDermott D, Fausti SA and Austin DF: Age-related changes
in the auditory brainstem response. J Am Acad Audiol. 23:18–35.
2012. View Article : Google Scholar : PubMed/NCBI
|
59
|
Alvarado JC, Fuentes-Santamaría V,
Gabaldón-Ull MC and Juiz JM1: Age-Related Hearing Loss Is
Accelerated by Repeated Short-Duration Loud Sound Stimulation Front
Neurosci. 12:28–29. 2019.
|
60
|
Hibino H, Nin F, Tsuzuki C and Kurachi Y:
How is the highly positive endocochlear potential formed? The
specific architecture of the stria vascularis and the roles of the
ion-transport apparatus. Pflugers Arch. 459:521–533. 2010.
View Article : Google Scholar : PubMed/NCBI
|
61
|
Gratton MA and Schulte BA: Alterations in
microvasculature are associated with atrophy of the stria
vascularis in quiet-aged gerbils. Hear Res. 82:44–52. 1995.
View Article : Google Scholar : PubMed/NCBI
|
62
|
Ocho S, Iwasaki S, Umemura K and Hoshino
T: A new model for investigating hair cell degeneration in the
guinea pig following damage of the stria vascularis using a
photochemical reaction. Eur Arch Otorhinolaryngol. 257:182–187.
2000. View Article : Google Scholar : PubMed/NCBI
|
63
|
Wangemann P: Comparison of ion transport
mechanisms between vestibular dark cells and strial marginal cells.
Hear Res. 90:149–157. 1995. View Article : Google Scholar : PubMed/NCBI
|
64
|
Wangemann P: K+ cycling and the
endocochlear potential. Hear Res. 165:1–9. 2002. View Article : Google Scholar : PubMed/NCBI
|
65
|
Takeuchi S and Ando M: Inwardly rectifying
K+ currents in intermediate cells in the cochlea of gerbils: A
possible contribution to the endocochlear potential. Neurosci Lett.
247:175–178. 1998. View Article : Google Scholar : PubMed/NCBI
|
66
|
Wu Jun and Han weiju: Structural changes
in thestrial blood-labyrinth barrier of aged C57BL/6 mice. Cell
Tissue Res. 685–696. 2015.
|
67
|
Bergers G and Song S: The role of
pericytes in blood-vessel formation and maintenance. Neuro Oncol.
7:452–464. 2005. View Article : Google Scholar : PubMed/NCBI
|
68
|
Díaz-Flores L, Gutiérrez R, Varela H,
Rancel N and Valladares F: Microvascular pericytes: A review of
their morphological and functional characteristics. Histol
Histopathol. 6:269–286. 1991.PubMed/NCBI
|
69
|
Gritli-Linde A, Vaziri Sani F, Rock JR,
Hallberg K, Iribarne D, Harfe BD and Linde A: Expression patterns
of the Tmem16 gene family during cephalic development in the mouse.
Gene Expr Patterns. 9:178–191. 2009. View Article : Google Scholar : PubMed/NCBI
|
70
|
Jeon JH, Park JW, Lee JW, Jeong SW, Yeo SW
and Kim IB: Expression and immunohistochemical localization of
TMEM16A/anoctamin 1, a calcium-activated chloride channel in the
mouse cochlea. Cell Tissue Res. 345:223–230. 2011. View Article : Google Scholar : PubMed/NCBI
|
71
|
Oh U and Jung J: Cellular functions of
TMEM16/anoctamin. Pflugers Arch. 468:443–453. 2016. View Article : Google Scholar : PubMed/NCBI
|
72
|
Groebe K, Klemm-Manns M, Schwall GP,
Hübenthal H, Unterluggauer H, Jansen-Dürr P, Tanguay RM, Morrow G
and Schrattenholz A: Age-dependent prosttranslational modifications
of voltage-dependent anion channel 1. Exp Gerontol. 45:632–637.
2010. View Article : Google Scholar : PubMed/NCBI
|
73
|
Chen J, Chu H, Xiong H, Chen Q, Zhou L,
Bing D, Liu Y, Gao Y, Wang S, Huang X and Cui Y: Expression
patterns of Ca(V)1.3 channels in the rat cochlea. Acta Biochim
Biophys Sin (Shanghai). 44:513–518. 2012. View Article : Google Scholar : PubMed/NCBI
|
74
|
Chen J, Chu H, Xiong H, Yu Y, Huang X,
Zhou L, Chen Q, Bing D, Liu Y, Wang S and Cui Y: Downregulation of
Cav1.3 calcium channel expression in the cochlea is associated with
age-related hearing loss in C57BL/6J mice. Neuroreport. 24:313–317.
2013. View Article : Google Scholar : PubMed/NCBI
|
75
|
Inui T, Mori Y, Watanabe M, Takamaki A,
Yamaji J, Sohma Y, Yoshida R, Takenaka H and Kubota T:
Physiological role of L-type Ca2+ channels in marginal cells in the
stria vascularis of guinea pigs. J Physiol Sci. 57:287–298. 2007.
View Article : Google Scholar : PubMed/NCBI
|
76
|
Crisan M, Yap S, Casteilla L, Chen CW,
Corselli M, Park TS, Andriolo G, Sun B, Zheng B, Zhang L, et al: A
perivascular origin for mesenchymal stem cells in multiple human
organs. Cell Stem Cell. 3:301–313. 2008. View Article : Google Scholar : PubMed/NCBI
|
77
|
Ma KT, Li XZ, Li L, Zhang ZP, Zhao L, Zhu
H and Si JQ: Comparison of electrophysiological properties of
vascular smooth muscle cells in different arterioles in guinea pig.
Sheng Li Xue Bao. 62:421–426. 2010.(In Chinese). PubMed/NCBI
|
78
|
Liu YH, Wang YP, Wang Y, Ma KT, Si JQ and
Li L: Study on the electrophsiological properties in the stria
vascularis pericytes in cochlear of guinea pig. Zhonghua Er Bi Yan
Hou Tou Jing Wai Ke Za Zhi. 51:600–605. 2016.(In Chinese).
PubMed/NCBI
|