1
|
Chhana A, Callon KE, Pool B, Naot D,
Gamble GD, Dray M, Pitto R, Bentley J, McQueen FM, Cornish J and
Dalbeth N: The effects of monosodium urate monohydrate crystals on
chondrocyte viability and function: Implications for development of
cartilage damage in gout. J Rheumatol. 40:2067–2074. 2013.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Liu R, Lioté F, Rose DM, Merz D and
Terkeltaub R: Proline-rich tyrosine kinase 2 and Src kinase
signaling transduce monosodium urate crystal-induced nitric oxide
production and matrix metalloproteinase 3 expression in
chondrocytes. Arthritis Rheum. 50:247–258. 2004. View Article : Google Scholar : PubMed/NCBI
|
3
|
Hwang HS, Yang CM, Park SJ and Kim HA:
Monosodium urate crystal-induced chondrocyte death via autophagic
process. Int J Mol Sci. 16:29265–29277. 2015. View Article : Google Scholar : PubMed/NCBI
|
4
|
Martillo MA, Nazzal L and Crittenden DB:
The crystallization of monosodium urate. Curr Rheumatol Rep.
16:4002014. View Article : Google Scholar : PubMed/NCBI
|
5
|
Kang DH: Hyperuricemia and progression of
chronic kidney disease: Role of phenotype transition of renal
tubular and endothelial cells. Contrib Nephrol. 192:48–55. 2018.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Liang WY, Zhu XY, Zhang JW, Feng XR, Wang
YC and Liu ML: Uric acid promotes chemokine and adhesion molecule
production in vascular endothelium via nuclear factor-kappa B
signaling. Nutr Metab Cardiovasc Dis. 25:187–194. 2015. View Article : Google Scholar : PubMed/NCBI
|
7
|
Kang DH, Han L, Ouyang X, Kahn AM,
Kanellis J, Li P, Feng L, Nakagawa T, Watanabe S, Hosoyamada M, et
al: Uric acid causes vascular smooth muscle cell proliferation by
entering cells via a functional urate transporter. Am J Nephrol.
25:425–433. 2005. View Article : Google Scholar : PubMed/NCBI
|
8
|
Kırça M, Oğuz N, Çetin A, Uzuner F and
Yeşilkaya A: Uric acid stimulates proliferative pathways in
vascular smooth muscle cells through the activation of p38 MAPK,
p44/42 MAPK and PDGFRβ. J Recept Signal Transduct Res. 37:167–173.
2017. View Article : Google Scholar : PubMed/NCBI
|
9
|
Choi YJ, Shin HS, Choi HS, Park JW, Jo I,
Oh ES, Lee KY, Lee BH, Johnson RJ and Kang DH: Uric acid induces
fat accumulation via generation of endoplasmic reticulum stress and
SREBP-1c activation in hepatocytes. Lab Invest. 94:1114–1125. 2014.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Xin Y, Wang K, Jia Z, Xu T, Xu Q, Zhang C,
Liu J, Chen R, Du Z and Sun J: Zurampic protects pancreatic
beta-cells from high uric acid induced-damage by inhibiting URAT1
and inactivating the ROS/AMPK/ERK pathways. Cell Physiol Biochem.
47:1074–1083. 2018. View Article : Google Scholar : PubMed/NCBI
|
11
|
Zhang Y, Yamamoto T, Hisatome I, Li Y,
Cheng W, Sun N, Cai B, Huang T, Zhu Y, Li Z, et al: Uric acid
induces oxidative stress and growth inhibition by activating
adenosine monophosphate-activated protein kinase and extracellular
signal-regulated kinase signal pathways in pancreatic β cells. Mol
Cell Endocrinol. 375:89–96. 2013. View Article : Google Scholar : PubMed/NCBI
|
12
|
Sautin YY, Nakagawa T, Zharikov S and
Johnson RJ: Adverse effects of the classic antioxidant uric acid in
adipocytes: NADPH oxidase-mediated oxidative/nitrosative stress. Am
J Physiol Cell Physiol. 293:C584–C596. 2007. View Article : Google Scholar : PubMed/NCBI
|
13
|
Evans SA, Doblado M, Chi MM, Corbett JA
and Moley KH: Facilitative glucose transporter 9 expression affects
glucose sensing in pancreatic beta-cells. Endocrinology.
150:5302–5310. 2009. View Article : Google Scholar : PubMed/NCBI
|
14
|
Caulfield MJ, Munroe PB, O'Neill D,
Witkowska K, Charchar FJ, Doblado M, Evans S, Eyheramendy S,
Onipinla A, Howard P, et al: SLC2A9 is a high-capacity urate
transporter in humans. PLoS Med. 5:e1972008. View Article : Google Scholar : PubMed/NCBI
|
15
|
Nigam SK and Bhatnagar V: The systems
biology of uric acid transporters: The role of remote sensing and
signaling. Curr Opin Nephrol Hypertens. 27:305–313. 2018.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Preitner F, Bonny O, Laverriere A, Rotman
S, Firsov D, Da Costa A, Metref S and Thorens B: Glut9 is a major
regulator of urate homeostasis and its genetic inactivation induces
hyperuricosuria and urate nephropathy. Proc Natl Acad Sci USA.
106:15501–15506. 2009. View Article : Google Scholar : PubMed/NCBI
|
17
|
Tu HP, Chen CJ, Tovosia S, Ko AM, Lee CH,
Ou TT, Lin GT, Chang SJ, Chiang SL, Chiang HC, et al: Associations
of a non-synonymous variant in SLC2A9 with gouty arthritis and uric
acid levels in Han Chinese subjects and solomon islanders. Ann
Rheum Dis. 69:887–890. 2010. View Article : Google Scholar : PubMed/NCBI
|
18
|
Nakanishi T, Ohya K, Shimada S, Anzai N
and Tamai I: Functional cooperation of URAT1 (SLC22A12) and URATv1
(SLC2A9) in renal reabsorption of urate. Nephrol Dial Transplant.
28:603–611. 2013. View Article : Google Scholar : PubMed/NCBI
|
19
|
Price KL, Sautin YY, Long DA, Zhang L,
Miyazaki H, Mu W, Endou H and Johnson RJ: Human vascular smooth
muscle cells express a urate transporter. J Am Soc Nephrol.
17:1791–1795. 2006. View Article : Google Scholar : PubMed/NCBI
|
20
|
Richardson S, Neama G, Phillips T, Bell S,
Carter SD, Moley KH, Moley JF, Vannucci SJ and Mobasheri A:
Molecular characterization and partial cDNA cloning of facilitative
glucose transporters expressed in human articular chondrocytes;
stimulation of 2-deoxyglucose uptake by IGF-I and elevated MMP-2
secretion by glucose deprivation. Osteoarthritis Cartilage.
11:92–101. 2003. View Article : Google Scholar : PubMed/NCBI
|
21
|
Zhai K, Tang Y, Zhang Y, Li F, Wang Y, Cao
Z, Yu J, Kou J and Yu B: NMMHC IIA inhibition impedes tissue factor
expression and venous thrombosis via Akt/GSK3beta-NF-kappaB
signalling pathways in the endothelium. Thromb Haemost.
114:173–185. 2015. View Article : Google Scholar : PubMed/NCBI
|
22
|
Zhai KF, Zheng JR, Tang YM, Li F, Lv YN,
Zhang YY, Gao Z, Qi J, Yu BY and Kou JP: The saponin D39 blocks
dissociation of non-muscular myosin heavy chain IIA from TNF
receptor 2, suppressing tissue factor expression and venous
thrombosis. Br J Pharmacol. 174:2818–2831. 2017. View Article : Google Scholar : PubMed/NCBI
|
23
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Zhai KF, Duan H, Khan GJ, Xu H, Han FK,
Cao WG, Gao GZ, Shan LL and Wei ZJ: Salicin from alangium chinense
ameliorates rheumatoid arthritis by modulating the Nrf2-HO-1-ROS
pathways. J Agric Food Chem. 66:6073–6082. 2018. View Article : Google Scholar : PubMed/NCBI
|
25
|
Anzai N, Ichida K, Jutabha P, Kimura T,
Babu E, Jin CJ, Srivastava S, Kitamura K, Hisatome I, Endou H and
Sakurai H: Plasma urate level is directly regulated by a
voltage-driven urate efflux transporter URATv1 (SLC2A9) in humans.
J Biol Chem. 283:26834–26838. 2008. View Article : Google Scholar : PubMed/NCBI
|
26
|
Enomoto A, Kimura H, Chairoungdua A,
Shigeta Y, Jutabha P, Cha SH, Hosoyamada M, Takeda M, Sekine T,
Igarashi T, et al: Molecular identification of a renal urate anion
exchanger that regulates blood urate levels. Nature. 417:447–452.
2002. View Article : Google Scholar : PubMed/NCBI
|
27
|
Eyre D: Collagen of articular cartilage.
Arthritis Res. 4:30–35. 2002. View
Article : Google Scholar : PubMed/NCBI
|
28
|
Ahn SO, Ohtomo S, Kiyokawa J, Nakagawa T,
Yamane M, Lee KJ, Kim KH, Kim BH, Tanaka J, Kawabe Y and Horiba N:
Stronger uricosuric effects of the novel selective URAT1 inhibitor
UR-1102 lowered plasma urate in tufted capuchin monkeys to a
greater extent than benzbromarone. J Pharmacol Exp Ther.
357:157–166. 2016. View Article : Google Scholar : PubMed/NCBI
|
29
|
Sharaf El Din UAA, Salem MM and Abdulazim
DO: Uric acid in the pathogenesis of metabolic, renal, and
cardiovascular diseases: A review. J Adv Res. 8:537–548. 2017.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Kanellis J, Watanabe S, Li JH, Kang DH, Li
P, Nakagawa T, Wamsley A, Sheikh-Hamad D, Lan HY, Feng L and
Johnson RJ: Uric acid stimulates monocyte chemoattractant protein-1
production in vascular smooth muscle cells via mitogen-activated
protein kinase and cyclooxygenase-2. Hypertension. 41:1287–1293.
2003. View Article : Google Scholar : PubMed/NCBI
|
31
|
Jia L, Xing J, Ding Y, Shen Y, Shi X, Ren
W, Wan M, Guo J, Zheng S, Liu Y, et al: Hyperuricemia causes
pancreatic beta-cell death and dysfunction through NF-kappaB
signaling pathway. PLoS One. 8:e782842013. View Article : Google Scholar : PubMed/NCBI
|
32
|
Corry DB, Eslami P, Yamamoto K, Nyby MD,
Makino H and Tuck ML: Uric acid stimulates vascular smooth muscle
cell proliferation and oxidative stress via the vascular
renin-angiotensin system. J Hypertens. 26:269–275. 2008. View Article : Google Scholar : PubMed/NCBI
|
33
|
Wu L, Liu H, Li L, Liu H, Cheng Q, Li H
and Huang H: Mitochondrial pathology in osteoarthritic
chondrocytes. Curr Drug Targets. 15:710–719. 2014. View Article : Google Scholar : PubMed/NCBI
|
34
|
Takada K, Hirose J, Yamabe S, Uehara Y and
Mizuta H: Endoplasmic reticulum stress mediates nitric
oxide-induced chondrocyte apoptosis. Biomed Rep. 1:315–319. 2013.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Henrotin YE, Bruckner P and Pujol JP: The
role of reactive oxygen species in homeostasis and degradation of
cartilage. Osteoarthritis Cartilage. 11:747–755. 2003. View Article : Google Scholar : PubMed/NCBI
|
36
|
Bu P, Le Y, Zhang Y and Cheng X: Hormonal
and chemical regulation of the Glut9 transporter in Mice. J
Pharmacol Exp Ther. 360:206–214. 2017. View Article : Google Scholar : PubMed/NCBI
|
37
|
Li T, Walsh JR, Ghishan FK and Bai L:
Molecular cloning and characterization of a human urate transporter
(hURAT1) gene promoter. Biochim Biophys Acta. 24:53–58. 2004.
View Article : Google Scholar
|
38
|
Hosoyamada M, Ichida K, Enomoto A, Hosoya
T and Endo H: Function and localization of urate transporter 1 in
mouse kidney. J Am Soc Nephrol. 15:261–268. 2004. View Article : Google Scholar : PubMed/NCBI
|
39
|
Shikhman AR, Brinson DC, Valbracht J and
Lotz MK: Cytokine regulation of facilitated glucose transport in
human articular chondrocytes. J Immunol. 15:7001–7008. 2001.
View Article : Google Scholar
|
40
|
Itahana Y, Han R, Barbier S, Lei Z, Rozen
S and Itahana K: The uric acid transporter SLC2A9 is a direct
target gene of the tumor suppressor p53 contributing to antioxidant
defense. Oncogene. 34:1799–1810. 2015. View Article : Google Scholar : PubMed/NCBI
|
41
|
Nishizawa K, Yoda N, Morokado F, Komori H,
Nakanishi T and Tamai I: Changes of drug pharmacokinetics mediated
by downregulation of kidney organic cation transporters Mate1 and
Oct2 in a rat model of hyperuricemia. PLoS One. 14:e02148622019.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Doshi M, Takiue Y, Saito H and Hosoyamada
M: The increased protein level of URAT1 was observed in
obesity/metabolic syndrome model mice. Nucleosides Nucleotides
Nucleic Acids. 30:1290–1294. 2011. View Article : Google Scholar : PubMed/NCBI
|
43
|
Augustin R, Carayannopoulos MO, Dowd LO,
Phay JE, Moley JF and Moley KH: Identification and characterization
of human glucose transporter-like protein-9 (GLUT9): Alternative
splicing alters trafficking. J Biol Chem. 279:16229–16236. 2004.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Wu X, Zhang J, Liu T, Yan M, Liu H, Xie H,
Zhang S, Sun B, Ke B and Zhou H: Uric acid crystal could inhibit
numb-induced URAT1 lysosome degradation in uric acid nephropathy. J
Physiol Biochem. 17:217–226. 2015. View Article : Google Scholar
|
45
|
Tan PK, Ostertag TM and Miner JN:
Mechanism of high affinity inhibition of the human urate
transporter URAT1. Sci Rep. 6:349952016. View Article : Google Scholar : PubMed/NCBI
|
46
|
Mandal AK, Mercado A, Foster A,
Zandi-Nejad K and Mount DB: Uricosuric targets of tranilast.
Pharmacol Res Perspect. 5:e002912017. View Article : Google Scholar : PubMed/NCBI
|
47
|
Long W, Panwar P, Witkowska K, Wong K,
O'Neill D, Chen XZ, Lemieux MJ and Cheeseman CI: Critical roles of
two hydrophobic residues within human glucose transporter 9
(hSLC2A9) in substrate selectivity and urate transport. J Biol
Chem. 290:15292–15303. 2015. View Article : Google Scholar : PubMed/NCBI
|
48
|
Long W, Panigrahi R, Panwar P, Wong K, O
Neill D, Chen XZ, Lemieux MJ and Cheeseman CI: Identification of
key residues for urate specific transport in human glucose
transporter 9 (hSLC2A9). Sci Rep. 7:411672017. View Article : Google Scholar : PubMed/NCBI
|
49
|
Kimura T, Takahashi M, Yan K and Sakurai
H: Expression of the GLUT1 and GLUT9 facilitative glucose
transporters in embryonic chondroblasts and mature chondrocytes in
ovine articular cartilage. PLoS One. 9:e849962014. View Article : Google Scholar : PubMed/NCBI
|
50
|
Mobasheri A, Dobson H, Mason SL,
Cullingham F, Shakibaei M, Moley JF and Moley KH: Expression of the
GLUT1 and GLUT9 facilitative glucose transporters in embryonic
chondroblasts and mature chondrocytes in ovine articular cartilage.
Cell Biol Int. 29:249–260. 2005. View Article : Google Scholar : PubMed/NCBI
|
51
|
Miner J, Tan PK, Hyndman D, Liu S, Iverson
C, Nanavati P, Hagerty DT, Manhard K, Shen Z, Girardet JL, et al:
Lesinurad, a novel, oral compound for gout, acts to decrease serum
uric acid through inhibition of urate transporters in the kidney.
Arthritis Res Ther. 18:2142016. View Article : Google Scholar : PubMed/NCBI
|