Linking myofibroblast generation and microvascular alteration: The role of CD248 from pathogenesis to therapeutic target (Review)
- Authors:
- Paola Di Benedetto
- Piero Ruscitti
- Vasiliki Liakouli
- Francesco Del Galdo
- Roberto Giacomelli
- Paola Cipriani
-
Affiliations: Department of Biotechnological and Applied Clinical Sciences, Rheumatology Unit, School of Medicine, University of L'Aquila, L'Aquila I‑67100, Italy, Leeds Biomedical Research Centre and Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS9 7TF, UK - Published online on: June 26, 2019 https://doi.org/10.3892/mmr.2019.10429
- Pages: 1488-1498
This article is mentioned in:
Abstract
Wynn TA: Cellular and molecular mechanisms of fibrosis. J Pathol. 214:199–210. 2008. View Article : Google Scholar : PubMed/NCBI | |
Pu KM, Sava P and Gonzalez AL: Microvascular targets for anti-fibrotic therapeutics. Yale J Biol Med. 86:537–554. 2013.PubMed/NCBI | |
Wynn TA: Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases. J Clin Invest. 117:524–529. 2007. View Article : Google Scholar : PubMed/NCBI | |
Sziksz E, Pap D, Lippai R, Béres NJ, Fekete A, Szabó AJ and Vannay A: Fibrosis related inflammatory mediators: Role of the IL-10 cytokine family. Mediators Inflamm. 2015:7646412015. View Article : Google Scholar : PubMed/NCBI | |
Giacomelli R, Afeltra A, Alunno A, Baldini C, Bartoloni-Bocci E, Berardicurti O, Carubbi F, Cauli A, Cervera R, Ciccia F, et al: International consensus: What else can we do to improve diagnosis and therapeutic strategies in patients affected by autoimmune rheumatic diseases (rheumatoid arthritis, spondyloarthritides, systemic sclerosis, systemic lupus erythematosus, antiphospholipid syndrome and Sjogren's syndrome)? The unmet needs and the clinical grey zone in autoimmune disease management. Autoimmun Rev. 16:911–924. 2017. View Article : Google Scholar : PubMed/NCBI | |
Cox TR and Erler JT: Remodeling and homeostasis of the extracellular matrix: Implications for fibrotic diseases and cance. Dis Models Mech. 4:165–178. 2011. View Article : Google Scholar | |
Gabbiani G: The myofibroblast in wound healing and fibrocontractive diseases. J Pathol. 200:500–503. 2003. View Article : Google Scholar : PubMed/NCBI | |
Hinz B, Phan SH, Thannickal VJ, Galli A, Bochaton-Piallat ML and Gabbiani G: The myofibroblast: One function, multiple origins. Am J Pathol. 170:1807–1816. 2007. View Article : Google Scholar : PubMed/NCBI | |
Cipriani P, Marrelli A, Liakouli V, Di Benedetto P and Giacomelli R: Cellular players in angiogenesis during the course of systemic sclerosis. Autoimmun Rev. 10:641–646. 2011. View Article : Google Scholar : PubMed/NCBI | |
Desmouliere A, Darby IA and Gabbiani G: Normal and pathologic soft tissue remodeling: Role of the myofibroblast, with special emphasis on liver and kidney fibrosis. Lab Invest. 83:1689–1707. 2003. View Article : Google Scholar : PubMed/NCBI | |
Virag JI and Murry CE: Myofibroblast and endothelial cell proliferation during murine myocardial infarct repair. Am J Pathol. 163:2433–2440. 2003. View Article : Google Scholar : PubMed/NCBI | |
Phan SH: The myofibroblast in pulmonary fibrosis. Chest. 122:286S–289S. 2002. View Article : Google Scholar : PubMed/NCBI | |
Cipriani P, Di Benedetto P, Ruscitti P, Capece D, Zazzeroni F, Liakouli V, Pantano I, Berardicurti O, Carubbi F, Pecetti G, et al: The Endothelial-mesenchymal transition in systemic sclerosis is induced by endothelin-1 and transforming growth factor-β and May Be blocked by macitentan, a dual endothelin-1 receptor antagonist. J Rheumatol. 42:1808–1816. 2015. View Article : Google Scholar : PubMed/NCBI | |
Liakouli V, Cipriani P, Di Benedetto P, Ruscitti P, Carubbi F, Berardicurti O, Panzera N and Giacomelli R: The role of extracellular matrix components in angiogenesis and fibrosis: Possible implication for systemic sclerosis. Mod Rheumatol. 15:1–11. 2018. | |
Sacchetti C, Bai Y, Stanford SM, Di Benedetto P, Cipriani P, Santelli E, Piera-Velazquez S, Chernitskiy V, Kiosses WB, Ceponis A, et al: PTP4A1 promotes TGFβ signaling and fibrosis in systemic sclerosis. Nat Commun. 8:10602017. View Article : Google Scholar : PubMed/NCBI | |
Abe R, Donnelly SC, Peng T, Bucala R and Metz CN: Peripheral blood fibrocytes: differentiation pathway and migration to wound sites. J Immunol. 166:7556–7562. 2001. View Article : Google Scholar : PubMed/NCBI | |
Leaf IA and Duffield JS: What can target kidney fibrosis? Nephrol Dial Transplant. 32 (Suppl 1):i89–i97. 2017. View Article : Google Scholar : PubMed/NCBI | |
Magro CM, Ross P, Marsh CB, Allen JN, Liff D, Knight DA, Waldman WJ and Cowden DJ: The role of anti-endothelial cell antibody-mediated microvascular injury in the evolution of pulmonary fibrosis in the setting of collagen vascular disease. Am J Clin Pathol. 127:237–247. 2007. View Article : Google Scholar : PubMed/NCBI | |
Ruart M, Chavarria L, Campreciós G, Suárez-Herrera N, Montironi C, Guixé-Muntet S, Bosch J, Friedman SL, Garcia-Pagán JC and Hernández-Gea V: Impaired endothelial autophagy promotes liver fibrosis by aggravating the oxidative stress response during acute liver injury. J Hepatol. 70:458–469. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lax S, Hardie D, Wilson A, Douglas M, Anderson G, Huso D, Isacke CM and Buckley CD: The pericyte and stromal marker CD248 (endosialin) is required for efficient lymph node expansion. Eur J Immunol. 40:1884–1889. 2010. View Article : Google Scholar : PubMed/NCBI | |
Bagley RG, Honma N, Weber W, Boutin P, Rouleau C, Shankara S, Kataoka S, Ishida I, Roberts BL and Teicher BA: Endosialin/TEM1/CD248 is a pericyte marker of embryonic and tumour neovascularisation. Microvasc Res. 76:180–188. 2008. View Article : Google Scholar : PubMed/NCBI | |
Kontsekova S, Polcicova K, Takacova M and Pastorekova S: Endosialin: Molecular and functional links to tumour angiogenesis. Neoplasma. 63:183–192. 2016.PubMed/NCBI | |
Nanda A, Karim B, Peng Z, Liu G, Qiu W, Gan C, Vogelstein B, St Croix B, Kinzler KW and Huso DL: Tumor endothelial marker 1 (TEM1) functions in the growth and progression of abdominal tumours. Proc Natl Acad Sci USA. 103:3351–3356. 2006. View Article : Google Scholar : PubMed/NCBI | |
Viski C, König C, Kijewska M, Mogler C, Isacke CM and Augustin HG: Endosialin-expressing pericytes promote metastatic dissemination. Cancer Res. 76:5313–5325. 2016. View Article : Google Scholar : PubMed/NCBI | |
Di Benedetto P, Liakouli V, Ruscitti P, Berardicurti O, Carubbi F, Panzera N, Di Bartolomeo S, Guggino G, Ciccia F, Triolo G, et al: Blocking CD248 molecules in perivascular stromal cells of patients with systemic sclerosis strongly inhibits their differentiation toward myofibroblasts and proliferation: A new potential target for antifibrotic therapy. Arthritis Res Ther. 20:2232018. View Article : Google Scholar : PubMed/NCBI | |
Tomkowicz B, Rybinski K, Nicolaides NC, Grasso L and Zhou Y: Endosialin/TEM-1/CD248 regulates pericyte proliferation through PDGF receptor signaling. Cancer Biol Ther. 9:908–915. 2010. View Article : Google Scholar : PubMed/NCBI | |
Rybinski K, Imtiyaz HZ, Mittica B, Drozdowski B, Fulmer J, Furuuchi K, Fernando S, Henry M, Chao Q, Kline B, et al: Targeting endosialin/CD248 through antibody-mediated internalization results in impaired pericyte maturation and dysfunctional tumour microvasculature. Oncotarget. 22:25429–25440. 2015. | |
Suresh Babu S, Valdez Y, Xu A, O'Byrne AM, Calvo F, Lei V and Conway EM: TGFβ-mediated suppression of CD248 in non-cancer cells via canonical Smad-dependent signaling pathways is uncoupled in cancer cells. BMC Cancer. 14:1132014. View Article : Google Scholar : PubMed/NCBI | |
Bartis D, Crowley LE, D'Souza VK, Borthwick L, Fisher AJ, Croft AP, Pongrácz JE, Thompson R, Langman G, Buckley CD and Thickett DR: Role of CD248 as a potential severity marker in idiopathic pulmonary fibrosis. BMC Pulm Med. 16:512016. View Article : Google Scholar : PubMed/NCBI | |
Mogler C, Wieland M, König C, Hu J, Runge A, Korn C, Besemfelder E, Breitkopf-Heinlein K, Komljenovic D, Dooley S, et al: Hepatic stellate cell-expressed endosialin balances fibrogenesis and hepatocyte proliferation during liver damage. EMBO Mol Med. 7:332–338. 2015. View Article : Google Scholar : PubMed/NCBI | |
Mogler C, König C, Wieland M, Runge A, Besemfelder E, Komljenovic D, Longerich T, Schirmacher P and Augustin HG: Hepatic stellate cells limit hepatocellular carcinoma progression through the orphan receptor endosialin. EMBO Mol Med. 9:741–749. 2017. View Article : Google Scholar : PubMed/NCBI | |
Smith SW, Croft AP, Morris HL, Naylor AJ, Huso DL, Isacke CM, Savage CO and Buckley CD: Genetic deletion of the stromal cell marker CD248 (Endosialin) protects against the development of renal fibrosis. Nephron. 131:265–277. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wilhelm A, Aldridge V, Haldar D, Naylor AJ, Weston CJ, Hedegaard D, Garg A, Fear J, Reynolds GM, Croft AP, et al: CD248/endosialin critically regulates hepatic stellate cell proliferation during chronic liver injury via a PDGF-regulated mechanism. Gut. 65:1175–1185. 2016. View Article : Google Scholar : PubMed/NCBI | |
Smith SW, Eardley KS, Croft AP, Nwosu J, Howie AJ, Cockwell P, Isacke CM, Buckley CD and Savage CO: CD248+ stromal cells are associated with progressive chronic kidney disease. Kidney Int. 80:199–207. 2011. View Article : Google Scholar : PubMed/NCBI | |
Rettig WJ, Garin-Chesa P, Healey JH, Su SL, Jaffe EA and Old LJ: Identification of endosialin, a cell surface glycoprotein of vascular endothelial cells in human cancer. Proc Natl Acad Sci USA. 89:10832–10836. 1992. View Article : Google Scholar : PubMed/NCBI | |
Brady J, Neal J, Sadakar N and Gasque P: Human endosialin (tumor endothelial marker 1) is abundantly expressed in highly malignant and invasive brain tumors. J Neuropathol Exp Neurol. 63:1274–1283. 2004. View Article : Google Scholar : PubMed/NCBI | |
St Croix B, Rago C, Velculescu V, Traverso G, Romans KE, Montgomery E, Lal A, Riggins GJ, Lengauer C, Vogelstein B and Kinzler KW: Genes expressed in human tumor endothelium. Science. 289:1197–1202. 2000. View Article : Google Scholar : PubMed/NCBI | |
MacFadyen JR, Haworth O, Roberston D, Hardie D, Webster MT, Morris HR, Panico M, Sutton-Smith M, Dell A, van der Geer P, et al: Endosialin (TEM1, CD248) is a marker of stromal fibroblasts and is not selectively expressed on tumour endothelium. FEBS Lett. 579:2569–2575. 2005. View Article : Google Scholar : PubMed/NCBI | |
Naylor AJ, Azzam E, Smith S, Croft A, Poyser C, Duffield JS, Huso DL, Gay S, Ospelt C, Cooper MS, et al: The mesenchymal stem cell marker CD248 (Endosialin) is a negative regulator of bone formation in mice. Arthritis Rheum. 64:3334–3343. 2012. View Article : Google Scholar : PubMed/NCBI | |
Christian S, Ahorn H, Koehler A, Eisenhaber F, Rodi HP, Garin-Chesa P, Park JE, Rettig WJ and Lenter MC: Molecular cloning and characterization of endosialin, a C-type lectin-like cell surface receptor of tumour endothelium. J Biol Chem. 276:7408–7414. 2001. View Article : Google Scholar : PubMed/NCBI | |
Valdez Y, Maia M and Conway EM: CD248: Reviewing its role in health and disease. Curr Drug Targets. 13:432–439. 2012. View Article : Google Scholar : PubMed/NCBI | |
Carson-Walter EB, Watkins DN, Nanda A, Vogelstein B, Kinzler KW and St Croix B: Cell surface tumour endothelial markers are conserved in mice and humans. Cancer Res. 61:6649–6655. 2001.PubMed/NCBI | |
Maia M, de Vriese A, Janssens T, Moons M, van Landuyt K, Tavernier J, Lories RJ and Conway EM: CD248 and its cytoplasmic domain: A therapeutic target for arthritis. Arthritis Rheum. 62:3595–3606. 2010. View Article : Google Scholar : PubMed/NCBI | |
Gardiol D: PDZ-containing proteins as targets in human pathologies. FEBS J. 279:35292012. View Article : Google Scholar : PubMed/NCBI | |
O'Shannessy DJ, Smith MF, Somers EB, Jackson SM, Albone E, Tomkowicz B, Cheng X, Park Y, Fernando D, Milinichik A, et al: Novel antibody probes for the characterization of endosialin/TEM-1. Oncotarget. 7:69420–69435. 2016.PubMed/NCBI | |
Khan KA, Naylor AJ, Khan A, Noy PJ, Mambretti M, Lodhia P, Athwal J, Korzystka A, Buckley CD and Willcox BE: Multimerin-2 is a ligand for group 14 family C-type lectins CLEC14A, CD93 and CD248 spanning the endothelial pericyte interface. Oncogene. 36:6097–7008. 2017. View Article : Google Scholar : PubMed/NCBI | |
Andreuzzi E, Colladel R, Pellicani R, Tarticchio G, Cannizzaro R, Spessotto P, Bussolati B, Brossa A, De Paoli P, Canzonieri V, et al: The angiostatic molecule Multimerin 2 is processed by MMP-9 to allow sprouting angiogenesis. Matrix Biol. 64:40–53. 2017. View Article : Google Scholar : PubMed/NCBI | |
Colladel R, Pellicani R, Andreuzzi E, Paulitti A, Tarticchio G, Todaro F, Colombatti A and Mongiat M: MULTIMERIN2 binds VEGF-A primarily via the carbohydrate chains exerting an angiostatic function and impairing tumor growth. Oncotarget. 7:2022–2037. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lorenzon E, Colladel R, Andreuzzi E, Marastoni S, Todaro F, Schiappacassi M, Ligresti G, Colombatti A and Mongiat M: MULTIMERIN2 impairs tumor angiogenesis and growth by interfering with VEGF-A/VEGFR2 pathway. Oncogene. 31:3136–3147. 2012. View Article : Google Scholar : PubMed/NCBI | |
Galvagni F, Nardi F, Spiga O, Trezza A, Tarticchio G, Pellicani R, Andreuzzi E, Caldi E, Toti P and Tosi GM: Dissecting the CD93-Multimerin 2 interaction involved in cell adhesion and migration of the activated endothelium. Matrix Biol. 64:112–127. 2017. View Article : Google Scholar : PubMed/NCBI | |
Opavsky R, Haviernik P, Jurkovicova D, Garin MT, Copeland NG, Gilbert DJ, Jenkins NA, Bies J, Garfield S and Pastorekova S: Molecular characterization of the mouse Tem1/endosialin gene regulated by cell density in vitro and expressed in normal tissues in vivo. Biol Chem. 276:38795–38807. 2001. View Article : Google Scholar | |
Rupp C, Dolznig H, Puri C, Sommergruber W, Kerjaschki D, Rettig WJ and Garin-Chesa P: Mouse endosialin, a C-type lectin-like cell surface receptor: Expression during embryonic development and induction in experimental cancer neoangiogenesis. Cancer Immun. 6:102006.PubMed/NCBI | |
MacFadyen J, Savage K, Wienke D and Isacke CM: Endosialin is expressed on stromal fibroblasts and CNS pericytes in mouse embryos and is downregulated during development. Gene Expr Patterns. 7:363–369. 2007. View Article : Google Scholar : PubMed/NCBI | |
Lax S, Hou TZ, Jenkinson E, Salmon M, MacFadyen JR, Isacke CM, Anderson G, Cunningham AF and Buckley CD: CD248/Endosialin is dynamically expressed on a subset of stromal cells during lymphoid tissue development, splenic remodeling and repair. FEBS Lett. 581:3550–3556. 2007. View Article : Google Scholar : PubMed/NCBI | |
Croft AP, Naylor AJ, Marshall JL, Hardie DL, Zimmermann B, Turner J, Desanti G, Adams H, Yemm AI, Müller-Ladner U, et al: Rheumatoid synovial fibroblasts differentiate into distinct subsets in the presence of cytokines and cartilage. Arthritis Res Ther. 18:2702016. View Article : Google Scholar : PubMed/NCBI | |
Rahimi RA and Leof EB: TGF-beta signaling: A tale of two responses. J Cell Biochem. 102:593–608. 2007. View Article : Google Scholar : PubMed/NCBI | |
Schiemann WP: Targeted TGF-beta chemotherapies: Friend or foe in treating human malignancies? Exp Rev Anticancer Ther. 7:609–611. 2007. View Article : Google Scholar | |
Tian M and Schiemann WP: The TGF-beta paradox in human cancer: An update. Future Oncol. 5:259–271. 2009. View Article : Google Scholar : PubMed/NCBI | |
Murray LA, Argentieri RL, Farrell FX, Bracht M, Sheng H, Whitaker B, Beck H, Tsui P, Cochlin K, Evanoff HL, et al: Hyper-responsiveness of IPF/UIP fibroblasts: Interplay between TGFbeta1, IL-13 and CCL2. Int J Biochem Cell Biol. 40:2174–2182. 2008. View Article : Google Scholar : PubMed/NCBI | |
Langenkamp E, Zhang L, Lugano R, Huang H, Elhassan TE, Georganaki M, Bazzar W, Lööf J, Trendelenburg G, Essand M, et al: Elevated expression of the C-type lectin CD93 in the glioblastoma vasculature regulates cytoskeletal rearrangements that enhance vessel function and reduce host survival. Cancer Res. 75:4504–4516. 2015. View Article : Google Scholar : PubMed/NCBI | |
Simonavicius N, Ashenden M, van Weverwijk A, Lax S, Huso DL, Buckley CD, Huijbers IJ, Yarwood H and Isacke CM: Pericytes promote selective vessel regression to regulate vascular patterning. Blood. 120:1516–1527. 2012. View Article : Google Scholar : PubMed/NCBI | |
Rouleau C, Curiel M, Weber W, Smale R, Kurtzberg L, Mascarello J, Berger C, Wallar G, Bagley R, Honma N, et al: Endosialin protein expression and therapeutic target potential in human solid tumors: Sarcoma versus carcinoma. Clin Cancer Res. 14:7223–7236. 2008. View Article : Google Scholar : PubMed/NCBI | |
Brett E, Zielins ER, Chin M, Januszyk M, Blackshear CP, Findlay M, Momeni A, Gurtner GC, Longaker MT and Wan DC: Isolation of CD248-expressing stromal vascular fraction for targeted improvement of wound healing. Wound Repair Regen. 25:414–422. 2017. View Article : Google Scholar : PubMed/NCBI | |
Naylor AJ, McGettrick HM, Maynard WD, May P, Barone F, Croft AP, Egginton S and Buckley CD: A differential role for CD248 (Endosialin) in PDGF-mediated skeletal muscle angiogenesis. PLoS One. 22:e1071462014. View Article : Google Scholar | |
Facciponte JG, Ugel S, De Sanctis F, Li C, Wang L, Nair G, Sehgal S, Raj A, Matthaiou E, Coukos G and Facciabene A: Tumor endothelial marker 1-specific DNA vaccination targets tumor vasculature. J Clin Invest. 124:1497–1511. 2014. View Article : Google Scholar : PubMed/NCBI | |
Tlsty TD and Hein PW: Know thy neighbor: Stromal cells can contribute oncogenic signals. Curr Opin Genet Dev. 11:54–59. 2001. View Article : Google Scholar : PubMed/NCBI | |
Bissell MJ, Kenny PA and Radisky DC: Microenvironmental regulators of tissue structure and function also regulate tumor induction and progression: The role of extracellular matrix and its degrading enzymes. Cold Spring Harb Symp Quant Biol. 70:343–356. 2005. View Article : Google Scholar : PubMed/NCBI | |
Bhowmick NA, Neilson EG and Moses HL: Stromal fibroblasts in cancer initiation and progression. Nature. 432:332–337. 2004. View Article : Google Scholar : PubMed/NCBI | |
Yang F, Tuxhorn JA, Ressler SJ, McAlhany SJ, Dang TD and Rowley DR: Stromal expression of connective tissue growth factor promotes angiogenesis and prostate cancer tumorigenesis. Cancer Res. 65:8887–8895. 2005. View Article : Google Scholar : PubMed/NCBI | |
Kucerova L, Zmajkovic J, Toro L, Skolekova S, Demkova L and Matuskova M: Tumor-driven molecular changes in human mesenchymal stromal cells. Cancer Microenviron. 8:1–14. 2015. View Article : Google Scholar : PubMed/NCBI | |
Nagy JA, Chang SH, Dvorak AM and Dvorak HF: Why are tumour blood vessels abnormal and why is it important to know? Br J Cancer. 100:865–869. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kiyohara E, Donovan N, Takeshima L, Huang S, Wilmott JS, Scolyer RA, Jones P, Somers EB, O'Shannessy DJ and Hoon DS: Endosialin expression in metastatic melanoma tumor microenvironment vasculature: Potential therapeutic implications. Cancer Microenviron. 8:111–118. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ohradanova A, Gradin K, Barathova M, Zatovicova M, Holotnakova T, Kopacek J, Parkkila S, Poellinger L, Pastorekova S and Pastorek J: Hypoxia upregulates expression of human endosialin gene via hypoxia-inducible factor 2. Br J Cancer. 99:1348–1356. 2008. View Article : Google Scholar : PubMed/NCBI | |
Jain RK: Molecular regulation of vessel maturation. Nat Med. 9:685–693. 2003. View Article : Google Scholar : PubMed/NCBI | |
Tian Y, Deng H, Han L, Hu S and Qi X: Hypoxia-inducible factor may induce the development of liver fibrosis in budd-chiari syndrome by regulating CD248/endosialin Expression: A Hypothesis. J Transl Int Med. 6:66–69. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lin SL, Chang FC, Schrimpf C, Chen YT, Wu CF, Wu VC, Chiang WC, Kuhnert F, Kuo CJ, Chen YM, et al: Targeting endothelium-pericyte cross talk by inhibiting VEGF receptor signaling attenuates kidney microvascular rarefaction and fibrosis. Am J Pathol. 178:911–923. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zanivan S, Maione F, Hein MY, Hernandez-Fernaud JR, Ostasiewicz P, Giraudo E and Mann M: SILAC-based proteomics of human primary endothelial cell morphogenesis unveils tumor angiogenic markers. Mol Cell Proteomics. 12:3599–3611. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wynn TA: Fibrotic disease and the T(H)1/T(H)2 paradigm. Nat Rev Immunol. 4:583–594. 2004. View Article : Google Scholar : PubMed/NCBI | |
Fraticelli P, Gabrielli B, Pomponio G, Valentini G, Bosello S, Riboldi P, Gerosa M, Faggioli P, Giacomelli R, Del Papa N, et al: Imatinib in Scleroderma Italian Study Group. Low-dose oral imatinib in the treatment of systemic sclerosis interstitial lung disease unresponsive to cyclophosphamide: A phase II pilot study. Arthritis Res Ther. 16:R1442014. View Article : Google Scholar : PubMed/NCBI | |
Rosenbloom J, Macarak E, Piera-Velazquez S and Jimenez SA: Human fibrotic diseases: Current challenges in fibrosis research. Methods Mol Biol. 1627:1–23. 2017. View Article : Google Scholar : PubMed/NCBI | |
Giacomelli R, Afeltra A, Alunno A, Bartoloni-Bocci E, Berardicurti O, Bombardieri M, Bortoluzzi A, Caporali R, Caso F, Cervera R, et al: Guidelines for biomarkers in autoimmune rheumatic diseases-evidence based analysis. Autoimmun Rev. 18:93–106. 2019. View Article : Google Scholar : PubMed/NCBI | |
Krieg T, Abraham D and Lafyatis R: Fibrosis in connective tissue disease: The role of the myofibroblast and fibroblast-epithelial cell interactions. Arthritis Res Ther. 9 (Suppl 2):S42007. View Article : Google Scholar : PubMed/NCBI | |
Cipriani P, Di Benedetto P, Ruscitti P, Liakouli V, Berardicurti O, Carubbi F, Ciccia F, Guggino G, Zazzeroni F, Alesse E, et al: Perivascular cells in diffuse cutaneous systemic sclerosis overexpress activated ADAM12 and are involved in myofibroblast transdifferentiation and development of fibrosis. J Rheumatol. 43:1340–1349. 2016. View Article : Google Scholar : PubMed/NCBI | |
Cipriani P, Di Benedetto P, Ruscitti P, Verzella D, Fischietti M, Zazzeroni F, Liakouli V, Carubbi F, Berardicurti O, Alesse E and Giacomelli R: Macitentan inhibits the transforming growth factor-β profibrotic action, blocking the signaling mediated by the ETR/TβRI complex in systemic sclerosis dermal fibroblasts. Arthritis Res Ther. 17:2472015. View Article : Google Scholar : PubMed/NCBI | |
Sato M, Suzuki S and Senoo H: Hepatic stellate cells: Unique characteristics in cell biology and phenotype. Cell Struct Funct. 28:105–112. 2003. View Article : Google Scholar : PubMed/NCBI | |
Lin SL, Kisseleva T, Brenner DA and Duffield JS: Pericytes and perivascular fibroblasts are the primary source of collagen-producing cells in obstructive fibrosis of the kidney. Am J Pathol. 173:1617–1627. 2008. View Article : Google Scholar : PubMed/NCBI | |
Cipriani P, Di Benedetto P, Ruscitti P, Campese AF, Liakouli V, Carubbi F, Pantano I, Berardicurt O, Screpanti I and Giacomelli R: Impaired endothelium-mesenchymal stem cells cross-talk in systemic sclerosis: A link between vascular and fibrotic features. Arthritis Res Ther. 16:4422014. View Article : Google Scholar : PubMed/NCBI | |
Cipriani P, Marrelli A, Di Benedetto P, Liakouli V, Carubbi F, Ruscitti P, Alvaro S, Pantano I, Campese AF, Grazioli P, et al: Scleroderma mesenchymal stem cells display a different phenotype from healthy controls; implications for regenerative medicine. Angiogenesis. 16:595–607. 2013. View Article : Google Scholar : PubMed/NCBI | |
Dulauroy S, Di Carlo SE, Langa F, Eberl G and Peduto L: Lineage tracing and genetic ablation of ADAM12(+) perivascular cells identify a major source of profibrotic cells during acute tissue injury. Nat Med. 18:1262–1270. 2012. View Article : Google Scholar : PubMed/NCBI | |
Chang-Panesso M and Humphreys BD: CD248/Endosialin: A novel pericyte target in renal fibrosis. Nephron. 131:262–264. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chen YT, Chang FC, Wu CF, Chou YH, Hsu HL, Chiang WC, Shen J, Chen YM, Wu KD, Tsai TJ, et al: Platelet-derived growth factor receptor signalling activates pericyte-myofibroblast transition in obstructive and post-ischemic kidney fibrosis. Kidney Int. 80:1170–1181. 2011. View Article : Google Scholar : PubMed/NCBI | |
Cipriani P, Di Benedetto P, Dietrich H, Ruscitti P, Liakouli V, Carubbi F, Pantano I, Berardicurti O, Sgonc R and Giacomelli R: Searching for a good model for systemic sclerosis: The molecular profile and vascular changes occurring in UCD-200 chickens strongly resemble the early phase of human systemic sclerosis. Arch Med Sci. 12:828–843. 2016. View Article : Google Scholar : PubMed/NCBI | |
Boor P, Ostendorf T and Floege J: PDGF and the progression of renal disease. Nephrol Dial Transplant. 29 (Suppl 1):i45–i54. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hinz B, Phan SH, Thannickal VJ, Prunotto M, Desmoulière A, Varga J, De Wever O, Mareel M and Gabbiani G: Recent developments in myofibroblast biology: Paradigms for connective tissue remodeling. Am J Pathol. 180:1340–1355. 2012. View Article : Google Scholar : PubMed/NCBI | |
De Wever O, Demetter P, Mareel M and Bracke M: Stromal myofibroblasts are drivers of invasive cancer growth. Int J Cancer. 123:2229–2238. 2008. View Article : Google Scholar : PubMed/NCBI | |
Cirri P and Chiarugi P: Cancer-associated-fibroblasts and tumour cells: A diabolic liaison driving cancer progression. Cancer Metastasis Rev. 31:195–208. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kalluri R and Zeisberg M: Fibroblasts in cancer. Nat Rev Cancer. 6:392–401. 2006. View Article : Google Scholar : PubMed/NCBI | |
Thiery JP: Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer. 2:442–454. 2002. View Article : Google Scholar : PubMed/NCBI | |
Cruz-Solbes AS and Youker K: Epithelial to mesenchymal transition (EMT) and endothelial to mesenchymal transition (EndMT): Role and implications in kidney fibrosis. Results Probl Cell Differ. 60:345–372. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chapman HA: Epithelial-mesenchymal interactions in pulmonary fibrosis. Annu Rev Physiol. 73:413–435. 2011. View Article : Google Scholar : PubMed/NCBI | |
Piera-Velazquez S, Li Z and Jimenez SA: Role of endothelial-mesenchymal transition (EndoMT) in the pathogenesis of fibrotic disorders. Am J Pathol. 179:1074–1080. 2011. View Article : Google Scholar : PubMed/NCBI | |
Coen M, Gabbiani G and Bochaton-Piallat ML: Myofibroblast-mediated adventitial remodeling: An underestimated player in arterial pathology. Arterioscler Thromb Vasc Biol. 31:2391–2396. 2011. View Article : Google Scholar : PubMed/NCBI | |
Lim H and Moon A: Inflammatory fibroblasts in cancer. Arch Pharm Res. 39:1021–1031. 2016. View Article : Google Scholar : PubMed/NCBI | |
Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, Naeem R, Carey VJ, Richardson AL and Weinberg RA: Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell. 121:335–348. 2005. View Article : Google Scholar : PubMed/NCBI | |
Padua D, Zhang XH, Wang Q, Nadal C, Gerald WL, Gomis RR and Massagué J: TGFbeta primes breast tumors for lung metastasis seeding through angiopoietin-like 4. Cell. 133:66–77. 2008. View Article : Google Scholar : PubMed/NCBI | |
Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C and Brown RA: Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol. 3:349–363. 2002. View Article : Google Scholar : PubMed/NCBI | |
Hinz B: The myofibroblast: Paradigm for a mechanically active cell. J Biomech. 43:146–155. 2010. View Article : Google Scholar : PubMed/NCBI | |
Otranto M, Sarrazy V, Bonté F, Hinz B, Gabbiani G and Desmoulière A: The role of the myofibroblast in tumor stroma remodeling. Cell Adh Migr. 6:203–219. 2012. View Article : Google Scholar : PubMed/NCBI | |
Liao Z, Tan ZW, Zhu P and Tan NS: Cancer-associated fibroblasts in tumor microenvironment-Accomplices in tumor malignancy. Cell Immunol. 2018.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI | |
Ireland LV and Mielgo A: Macrophages and fibroblasts, key players in cancer chemoresistance. Front Cell Dev Biol. 6:1312018. View Article : Google Scholar : PubMed/NCBI | |
Farmer P, Bonnefoi H, Anderle P, Cameron D, Wirapati P, Becette V, André S, Piccart M, Campone M, Brain E, et al: A stroma-related gene signature predicts resistance to neoadjuvant chemotherapy in breast cancer. Nat Med. 15:68–74. 2009. View Article : Google Scholar : PubMed/NCBI | |
Pandol S, Edderkaoui M, Gukovsky I, Lugea A and Gukovskaya A: Desmoplasia of pancreatic ductal adenocarcinoma. Clin Gastroenterol Hepatol 7 (11 Suppl). S44–S47. 2009. View Article : Google Scholar | |
DuFort CC, Delgiorno KE and Hingorani SR: Mounting pressure in the microenvironment: Fluids, solids, and cells in pancreatic ductal adenocarcinoma. Gastroenterology. 150:1545–1557.e2. 2016. View Article : Google Scholar : PubMed/NCBI | |
Christian S, Winkler R, Helfrich I, Boos AM, Besemfelder E, Schadendorf D and Augustin HG: Endosialin (Tem1) is a marker of tumor-associated myofibroblasts and tumor vessel-associated mural cells. Am J Pathol. 172:486–494. 2008. View Article : Google Scholar : PubMed/NCBI | |
Fujii S, Fujihara A, Natori K, Abe A, Kuboki Y, Higuchi Y, Aizawa M, Kuwata T, Kinoshita T, Yasui W and Ochiai A: TEM1 expression in cancer-associated fibroblasts is correlated with a poor prognosis in patients with gastric cancer. Cancer Med. 4:1667–1678. 2015. View Article : Google Scholar : PubMed/NCBI | |
Diaz LA Jr, Coughlin CM, Weil SC, Fishel J, Gounder MM, Lawrence S, Azad N, O'Shannessy DJ, Grasso L, Wustner J, et al: A first-in-human phase I study of MORAb-004, a monoclonal antibody to endosialin in patients with advanced solid tumors. Clin Cancer Res. 21:1281–1288. 2015. View Article : Google Scholar : PubMed/NCBI | |
Norris RE, Fox E, Reid JM, Ralya A, Liu XW, Minard C and Weigel BJ: Phase 1 trial of ontuxizumab (MORAb-004) in children with relapsed or refractory solid tumors: A report from the Children's Oncology Group Phase 1 Pilot Consortium (ADVL1213). Pediatr Blood Cancer. 65:e269442018. View Article : Google Scholar : PubMed/NCBI | |
D'Angelo SP, Hamid OA, Tarhini A, Schadendorf D, Chmielowski B, Collichio FA, Pavlick AC, Lewis KD, Weil SC, Heyburn J, et al: A phase 2 study of ontuxizumab, a monoclonal antibody targeting endosialin, in metastatic melanoma. Invest New Drugs. 36:103–113. 2018. View Article : Google Scholar : PubMed/NCBI | |
Grothey A, Strosberg JR, Renfro LA, Hurwitz HI, Marshall JL, Safran H, Guarino MJ, Kim GP, Hecht JR, Weil SC, et al: A randomized, double-blind, placebo-controlled phase II study of the efficacy and safety of monotherapy ontuxizumab (MORAb-004) plus best supportive care in patients with chemorefractory metastatic colorectal cancer. Clin Cancer Res. 24:316–325. 2018. View Article : Google Scholar : PubMed/NCBI | |
Rouleau C, Gianolio DA, Smale R, Roth SD, Krumbholz R, Harper J, Munroe KJ, Green TL, Horten BC, Schmid SM and Teicher BA: Anti-endosialin antibody-drug conjugate: Potential in sarcoma and other malignancies. Mol Cancer Ther. 14:2081–2089. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lee S: What tumor vessels can tell us. Pigment Cell Melanoma Res. 23:309–311. 2010. View Article : Google Scholar : PubMed/NCBI |