1
|
Weijerman ME and de Winter JP: Clinical
practice: The care of children with Down syndrome. Eur J Pediatr.
169:1445–1452. 2010. View Article : Google Scholar : PubMed/NCBI
|
2
|
Patterson D: Molecular genetic analysis of
Down syndrome. Hum Genet. 126:195–214. 2009. View Article : Google Scholar : PubMed/NCBI
|
3
|
Gardiner KJ: Molecular basis of
pharmacotherapies for cognition in Down syndrome. Trends Pharmacol
Sci. 31:66–73. 2010. View Article : Google Scholar : PubMed/NCBI
|
4
|
Hickey F, Hickey E and Summar KL: Medical
update for children with Down syndrome for the pediatrician and
family practitioner. Adv Pediatr. 59:137–157. 2012. View Article : Google Scholar : PubMed/NCBI
|
5
|
Jin S, Lee YK, Lim YC, Zheng Z, Lin XM, Ng
DP, Holbrook JD, Law HY, Kwek KY, Yeo GS and Ding C: Global DNA
hypermethylation in down syndrome placenta. PLoS Genet.
9:e10035152013. View Article : Google Scholar : PubMed/NCBI
|
6
|
Costa V, Angelini C, D'Apice L, Mutarelli
M, Casamassimi A, Sommese L, Gallo MA, Aprile M, Esposito R, Leone
L, et al: Massive-scale RNA-Seq analysis of non ribosomal
transcriptome in human trisomy 21. PLoS One. 6:e184932011.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Ambros V: The functions of animal
microRNAs. Nature. 431:350–355. 2004. View Article : Google Scholar : PubMed/NCBI
|
8
|
Bartel DP: MicroRNAs: Genomics,
biogenesis, mechanism, and function. Cell. 116:281–297. 2004.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Liao JM, Zhou X, Zhang Y and Lu H:
MiR-1246: A new link of the p53 family with cancer and Down
syndrome. Cell Cycle. 11:2624–2630. 2012. View Article : Google Scholar : PubMed/NCBI
|
10
|
Shi WL, Liu ZZ, Wang HD, Wu D, Zhang H,
Xiao H, Chu Y, Hou QF and Liao SX: Integrated miRNA and mRNA
expression profiling in fetal hippocampus with Down syndrome. J
Biomed Sci. 23:482016. View Article : Google Scholar : PubMed/NCBI
|
11
|
Letourneau A, Santoni FA, Bonilla X,
Sailani MR, Gonzalez D, Kind J, Chevalier C, Thurman R, Sandstrom
RS, Hibaoui Y, et al: Domains of genome-wide gene expression
dysregulation in Down's syndrome. Nature. 508:345–350. 2014.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Levin S, Schlesinger M, Handzel Z, Hahn T,
Altman Y, Czernobilsky B and Boss J: Thymic deficiency in Down's
syndrome. Pediatrics. 63:80–87. 1979.PubMed/NCBI
|
13
|
Larocca LM, Lauriola L, Ranelletti FO,
Piantelli M, Maggiano N, Ricci R and Capelli A: Morphological and
immunohistochemical study of Down syndrome thymus. Am J Med Genet.
(Suppl 37):225–230. 1990.
|
14
|
Moreira-Filho CA, Bando SY, Bertonha FB,
Silva FN, Costa Lda F, Ferreira LR, Furlanetto G, Chacur P, Zerbini
MC and Carneiro-Sampaio M: Modular transcriptional repertoire and
MicroRNA target analyses characterize genomic dysregulation in the
thymus of Down syndrome infants. Oncotarget. 7:7497–7533. 2016.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Smyth GK: LIMMA: Linear models for
microarray data. Bioinformatics and Computational Biology Solutions
Using R and Bioconductor. Gentleman R, Carey V, Dudoit S, Irizarry
R and Huber W: Springer; New York, NY: pp. 397–420. 2005,
View Article : Google Scholar
|
16
|
R Core Team: R, . A Language and
environment for statistical computing. Version 3.3.3. R Foundation
for Statistical Computing; Vienna: 2017
|
17
|
Smyth G: Linear models and empirical bayes
methods for assessing differential expression in microarray
experiments. Stat Appl Genet Mol Biol. 3:Article32004. View Article : Google Scholar : PubMed/NCBI
|
18
|
Wang L, Cao C, Ma Q, Zeng Q, Wang H, Cheng
Z, Zhu G, Qi J, Ma H, Nian H and Wang Y: RNA-seq analyses of
multiple meristems of soybean: Novel and alternative transcripts,
evolutionary and functional implications. BMC Plant Biol.
14:1692014. View Article : Google Scholar : PubMed/NCBI
|
19
|
Betel D, Koppal A, Agius P, Sander C and
Leslie C: Comprehensive modeling of microRNA targets predicts
functional non-conserved and non-canonical sites. Genome Biol.
11:R902010. View Article : Google Scholar : PubMed/NCBI
|
20
|
Shannon P, Markiel A, Ozier O, Baliga NS,
Wang JT, Ramage D, Amin N, Schwikowski B and Ideker T: Cytoscape: A
software environment for integrated models of biomolecular
interaction networks. Genome Res. 13:2498–2504. 2003. View Article : Google Scholar : PubMed/NCBI
|
21
|
Ehsani Ardakani MJ, Safaei A, Arefi
Oskouie A, Haghparast H, Haghazali M, Mohaghegh Shalmani H,
Peyvandi H, Naderi N and Zali MR: Evaluation of liver cirrhosis and
hepatocellular carcinoma using Protein-Protein Interaction
Networks. Gastroenterol Hepatol Bed Bench. 9 (Suppl 1):S14–S22.
2016.PubMed/NCBI
|
22
|
Maere S, Heymans K and Kuiper M: BiNGO: A
Cytoscape plugin to assess overrepresentation of gene ontology
categories in biological networks. Bioinformatics. 21:3448–3449.
2005. View Article : Google Scholar : PubMed/NCBI
|
23
|
Beissbarth T and Speed TP: GOstat: Find
statistically overrepresented Gene Ontologies within a group of
genes. Bioinformatics. 20:1464–1465. 2004. View Article : Google Scholar : PubMed/NCBI
|
24
|
Wu J, Mao X, Cai T, Luo J and Wei L: KOBAS
server: A web-based platform for automated annotation and pathway
identification. Nucleic Acids Res. 34:W720–W724. 2006. View Article : Google Scholar : PubMed/NCBI
|
25
|
Lim JH, Kim DJ, Lee DE, Han JY, Chung JH,
Ahn HK, Lee SW, Lim DH, Lee YS, Park SY and Ryu HM: Genome-wide
microRNA expression profiling in placentas of fetuses with Down
syndrome. Placenta. 36:322–328. 2015. View Article : Google Scholar : PubMed/NCBI
|
26
|
Li YY, Alexandrov PN, Pogue AI, Zhao Y,
Bhattacharjee S and Lukiw WJ: miRNA-155 up-regulation and
complement factor H (CFH) deficits in Down's syndrome. Neuroreport.
23:168–173. 2012. View Article : Google Scholar : PubMed/NCBI
|
27
|
Bofill-De Ros X, Santos M, Vila-Casadesús
M, Villanueva E, Andreu N, Dierssen M and Fillat C: Genome-wide
miR-155 and miR-802 target gene identification in the hippocampus
of Ts65Dn Down syndrome mouse model by miRNA sponges. BMC Genomics.
16:9072015. View Article : Google Scholar : PubMed/NCBI
|
28
|
Ben-Ami O, Pencovich N, Lotem J, Levanon D
and Groner Y: A regulatory interplay between miR-27a and Runx1
during megakaryopoiesis. Proc Natl Acad Sci USA. 106:238–243. 2009.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Izraeli S, Rainis L, Hertzberg L, Smooha G
and Birger Y: Trisomy of chromosome 21 in leukemogenesis. Blood
Cells Mol Dis. 39:156–159. 2007. View Article : Google Scholar : PubMed/NCBI
|
30
|
Clarimón J, Bertranpetit J, Boada M,
Tàrraga L and Comas D: HSP70-2 (HSPA1B) is associated with
noncognitive symptoms in late-onset Alzheimer's disease. J Geriatr
Psychiatry Neurol. 16:146–150. 2003. View Article : Google Scholar : PubMed/NCBI
|
31
|
Yoo B, Seidl R, Cairns N and Lubec G:
Heat-shock protein 70 levels in brain of patients with Down
syndrome and Alzheimer's disease. In: The Molecular Biology of Down
Syndrome. Springer; New York, NY: pp. 315–322. 1999,
|
32
|
Lockstone HE, Harris LW, Swatton JE,
Wayland MT, Holland AJ and Bahn S: Gene expression profiling in the
adult Down syndrome brain. Genomics. 90:647–660. 2007. View Article : Google Scholar : PubMed/NCBI
|
33
|
Kahlem P, Sultan M, Herwig R, Steinfath M,
Balzereit D, Eppens B, Saran NG, Pletcher MT, South ST, Stetten G,
et al: Transcript level alterations reflect gene dosage effects
across multiple tissues in a mouse model of down syndrome. Genome
Res. 14:1258–1267. 2004. View Article : Google Scholar : PubMed/NCBI
|
34
|
Pritchard M, Reeves RH, Dierssen M,
Patterson D and Gardiner KJ: Down syndrome and the genes of human
chromosome 21: Current knowledge and future potentials. Report on
the Expert workshop on the biology of chromosome 21 genes: Towards
gene-phenotype correlations in Down syndrome. Washington D.C.,
September 28-October 1, 2007. Cytogenet Genome Res. 121:67–77.
2008. View Article : Google Scholar : PubMed/NCBI
|
35
|
Hibaoui Y, Grad I, Letourneau A, Santoni
FA, Antonarakis SE and Feki A: Data in brief: Transcriptome
analysis of induced pluripotent stem cells from monozygotic twins
discordant for trisomy 21. Genomics Data. 2:226–229. 2014.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Shenouda SK and Alahari SK: MicroRNA
function in cancer: Oncogene or a tumor suppressor? Cancer
Metastasis Rev. 28:369–378. 2009. View Article : Google Scholar : PubMed/NCBI
|
37
|
Sarver AL, Li L and Subramanian S:
MicroRNA miR-183 functions as an oncogene by targeting the
transcription factor EGR1 and promoting tumor cell migration.
Cancer Res. 70:9570–9580. 2010. View Article : Google Scholar : PubMed/NCBI
|
38
|
Perluigi M and Butterfield DA: Oxidative
stress and Down syndrome: A route toward Alzheimer-like dementia.
Curr Gerontol Geriatr Res. 2012:7249042011.PubMed/NCBI
|
39
|
Pagano G and Castello G: Oxidative stress
and mitochondrial dysfunction in Down syndrome. In:
Neurodegenerative Diseases. Springer; New York, NY: pp. 291–299.
2012, PubMed/NCBI
|
40
|
Glass R, Townsend-Nicholson A and
Burnstock G: P2 receptors in the thymus: Expression of P2X and P2Y
receptors in adult rats, an immunohistochemical and in situ
hybridisation study. Cell Tissue Res. 300:295–306. 2000. View Article : Google Scholar : PubMed/NCBI
|