1
|
Ferro A, Peleteiro B, Malvezzi M, Bosetti
C, Bertuccio P, Levi F, Negri E, La Vecchia C and Lunet N:
Worldwide trends in gastric cancer mortality (1980–2011), with
predictions to 2015, and incidence by subtype. Eur J Cancer.
50:1330–1344. 2014. View Article : Google Scholar : PubMed/NCBI
|
2
|
Jemal A, Bray F, Center MM, Ferlay J, Ward
E and Forman D: Global cancer statistics. CA Cancer J Clin.
61:69–90. 2011. View Article : Google Scholar : PubMed/NCBI
|
3
|
Torre LA, Bray F, Siegel RL, Ferlay J,
Lortet-Tieulent J and Jemal A: Global cancer statistics, 2012. CA
Cancer J Clin. 65:87–108. 2015. View Article : Google Scholar : PubMed/NCBI
|
4
|
Guan X: Cancer metastases: Challenges and
opportunities. Acta Pharm Sin B. 5:402–418. 2015. View Article : Google Scholar : PubMed/NCBI
|
5
|
Matsuoka T and Yashiro M: Rho/ROCK
signaling in motility and metastasis of gastric cancer. World J
Gastroenterol. 20:13756–13766. 2014. View Article : Google Scholar : PubMed/NCBI
|
6
|
Zhu J, Xue Z, Zhang S, Guo X, Zhai L,
Shang S, Zhang Y and Lu H: Integrated analysis of the prognostic
role of the lymph node ratio in node-positive gastric cancer: A
meta-analysis. Int J Surg. 57:76–83. 2018. View Article : Google Scholar : PubMed/NCBI
|
7
|
Song F, Yang D, Liu B, Guo Y, Zheng H, Li
L, Wang T, Yu J, Zhao Y, Niu R, et al: Integrated microRNA network
analyses identify a poor-prognosis subtype of gastric cancer
characterized by the miR-200 family. Clin Cancer Res. 20:878–889.
2014. View Article : Google Scholar : PubMed/NCBI
|
8
|
Tang H, Deng M, Tang Y and Xie X, Guo J,
Kong Y, Ye F, Su Q and Xie X: miR-200b and miR-200c as prognostic
factors and mediators of gastric cancer cell progression. Clin
Cancer Res. 19:5602–5612. 2013. View Article : Google Scholar : PubMed/NCBI
|
9
|
Wu JG, Wang JJ, Jiang X, Lan JP, He XJ,
Wang HJ, Ma YY, Xia YJ, Ru GQ, Ma J, et al: miR-125b promotes cell
migration and invasion by targeting PPP1CA-Rb signal pathways in
gastric cancer, resulting in a poor prognosis. Gastric Cancer.
18:729–739. 2015. View Article : Google Scholar : PubMed/NCBI
|
10
|
Wang JY, Jiang JB, Li Y, Wang YL and Dai
Y: MicroRNA-299-3p suppresses proliferation and invasion by
targeting VEGFA in human colon carcinoma. Biomed Pharmacother.
93:1047–1054. 2017. View Article : Google Scholar : PubMed/NCBI
|
11
|
Göhring AR, Reuter S, Clement JH, Cheng X,
Theobald J, Wölfl S and Mrowka R: Human microRNA-299-3p decreases
invasive behavior of cancer cells by downregulation of Oct4
expression and causes apoptosis. PLoS One. 12:e01749122017.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Zheng D, Dai Y, Wang S and Xing X:
MicroRNA-299-3p promotes the sensibility of lung cancer to
doxorubicin through directly targeting ABCE1. Int J Clin Exp
Pathol. 8:10072–10081. 2015.PubMed/NCBI
|
13
|
Chen X, Qi M, Yang Q and Li JY: miR-299-3p
functions as a tumor suppressor in thyroid cancer by regulating
SHOC2. Eur Rev Med Pharmacol Sci. 23:232–240. 2019.PubMed/NCBI
|
14
|
Dang S, Zhou J, Wang Z, Wang K, Dai S and
He S: miR-299-3p functions as a tumor suppressor via targeting
Sirtuin 5 in hepatocellular carcinoma. Biomed Pharmacother.
106:966–975. 2018. View Article : Google Scholar : PubMed/NCBI
|
15
|
Sanderson RD, Elkin M, Rapraeger AC, Ilan
N and Vlodavsky I: Heparanase regulation of cancer, autophagy and
inflammation: New mechanisms and targets for therapy. FEBS J.
284:42–55. 2017. View Article : Google Scholar : PubMed/NCBI
|
16
|
Ilan N, Elkin M and Vlodavsky I:
Regulation, function and clinical significance of heparanase in
cancer metastasis and angiogenesis. Int J Biochem Cell Biol.
38:2018–2039. 2006. View Article : Google Scholar : PubMed/NCBI
|
17
|
Washington K: 7th edition of the AJCC
cancer staging manual: Stomach. Ann Surg Oncol. 17:3077–3079. 2010.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Lauren P: The two histological main types
of gastric carcinoma: Diffuse and so-called intestinal-type
carcinoma. An Attempt at a Histo-Clinical Classification. Acta
Pathol Microbiol Scand. 64:31–49. 1965. View Article : Google Scholar : PubMed/NCBI
|
19
|
Wong N and Wang X: miRDB: An online
resource for microRNA target prediction and functional annotations.
Nucleic Acids Res 43 (Database Issue). D146–D152. 2015. View Article : Google Scholar
|
20
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Agarwal V, Bell GW, Nam JW and Bartel DP:
Predicting effective microRNA target sites in mammalian mRNAs.
Elife. 4:2015. View Article : Google Scholar
|
22
|
Liu W and Wang X: Prediction of functional
microRNA targets by integrative modeling of microRNA binding and
target expression data. Genome Biol. 20:182019. View Article : Google Scholar : PubMed/NCBI
|
23
|
Chen XP, Luo JS, Tian Y, Nie CL, Cui W and
Zhang WD: Downregulation of heparanase expression results in
suppression of invasion, migration, and adhesion abilities of
hepatocellular carcinoma cells. Biomed Res Int. 2015:2419832015.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Li M, Li J, Ding X, He M and Cheng SY:
microRNA and cancer. AAPS J. 12:309–317. 2010. View Article : Google Scholar : PubMed/NCBI
|
25
|
Li M, Chen SM, Chen C, Zhang ZX, Dai MY,
Zhang LB, Wang SB, Dai Q and Tao ZZ: microRNA-299-3p inhibits
laryngeal cancer cell growth by targeting human telomerase reverse
transcriptase mRNA. Mol Med Rep. 11:4645–4649. 2015. View Article : Google Scholar : PubMed/NCBI
|
26
|
Jong HL, Mustafa MR, Vanhoutte PM,
AbuBakar S and Wong PF: MicroRNA 299-3p modulates replicative
senescence in endothelial cells. Physiol Genomics. 45:256–267.
2013. View Article : Google Scholar : PubMed/NCBI
|
27
|
Zcharia E, Jia J, Zhang X, Baraz L,
Lindahl U, Peretz T, Vlodavsky I and Li JP: Newly generated
heparanase knock-out mice unravel co-regulation of heparanase and
matrix metalloproteinases. PLoS One. 4:e51812009. View Article : Google Scholar : PubMed/NCBI
|
28
|
Wang X, Wen W, Wu H, Chen Y, Ren G and Guo
W: Heparanase expression correlates with poor survival in oral
mucosal melanoma. Med Oncol. 30:6332013. View Article : Google Scholar : PubMed/NCBI
|
29
|
Zhang W, Chan H, Wei L, Pan Z, Zhang J and
Li L: Overexpression of heparanase in ovarian cancer and its
clinical significance. Oncol Rep. 30:2279–2287. 2013. View Article : Google Scholar : PubMed/NCBI
|
30
|
Ferro V, Dredge K, Liu L, Hammond E,
Bytheway I, Li C, Johnstone K, Karoli T, Davis K, Copeman E and
Gautam A: PI-88 and novel heparan sulfate mimetics inhibit
angiogenesis. Semin Thromb Hemost. 33:557–568. 2007. View Article : Google Scholar : PubMed/NCBI
|
31
|
Vreys V and David G: Mammalian heparanase:
What is the message? J Cell Mol Med. 11:427–452. 2007. View Article : Google Scholar : PubMed/NCBI
|
32
|
Liao BY, Wang Z, Hu J, Liu WF, Shen ZZ,
Zhang X, Yu L, Fan J and Zhou J: PI-88 inhibits postoperative
recurrence of hepatocellular carcinoma via disrupting the surge of
heparanase after liver resection. Tumour Biol. 37:2987–2998. 2016.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Negrete-Garcia MC, Ramírez-Rodriguez SL,
Rangel-Escareño C, Muñoz-Montero S, Kelly-García J,
Vázquez-Manríquez ME, Santillán P, Ramírez MM, Ramírez-Martínez G,
Ramírez-Venegas A and Ortiz-Quintero B: Deregulated microRNAs in
cancer-associated fibroblasts from front tumor tissues of lung
adenocarcinoma as potential predictors of tumor promotion. Tohoku J
Exp Med. 246:107–120. 2018. View Article : Google Scholar : PubMed/NCBI
|
34
|
Putz EM, Mayfosh AJ, Kos K, Barkauskas DS,
Nakamura K, Town L, Goodall KJ, Yee DY, Poon IK, Baschuk N, et al:
NK cell heparanase controls tumor invasion and immune surveillance.
J Clin Invest. 127:2777–2788. 2017. View
Article : Google Scholar : PubMed/NCBI
|
35
|
Waning DL and Guise TA: Molecular
mechanisms of bone metastasis and associated muscle weakness. Clin
Cancer Res. 20:3071–3077. 2014. View Article : Google Scholar : PubMed/NCBI
|
36
|
Thompson CA, Purushothaman A, Ramani VC,
Vlodavsky I and Sanderson RD: Heparanase regulates secretion,
composition, and function of tumor cell-derived exosomes. J Biol
Chem. 288:10093–10099. 2013. View Article : Google Scholar : PubMed/NCBI
|