1
|
Uckun FM, Gaynon PS, Sensel MG, Nachman J,
Trigg ME, Steinherz PG, Hutchinson R, Bostrom BC, Sather HN and
Reaman GH: Clinical features and treatment outcome of childhood
T-lineage acute lymphoblastic leukemia according to the apparent
maturational stage of T-lineage leukemic blasts: A children's
cancer group study. J Clin Oncol. 15:2214–2221. 1997. View Article : Google Scholar : PubMed/NCBI
|
2
|
Lepretre S, Graux C, Touzart A, Macintyre
E and Boissel N: Adult T-type lymphoblastic lymphoma: Treatment
advances and prognostic indicators. Exp Hematol. 51:7–16. 2017.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Portell CA and Sweetenham JW: Adult
lymphoblastic lymphoma. Cancer J. 18:432–438. 2012. View Article : Google Scholar : PubMed/NCBI
|
4
|
Lee WJ, Moon HR, Won C, Chang SE, Choi JH,
Moon KC and Lee MW: Precursor B- or T-lymphoblastic lymphoma
presenting with cutaneous involvement: A series of 13 cases
including 7 cases of cutaneous T-lymphoblastic lymphoma. J Am Acad
Dermatol. 70:318–325. 2014. View Article : Google Scholar : PubMed/NCBI
|
5
|
Aifantis I, Raetz E and Buonamici S:
Molecular pathogenesis of T-cell leukaemia and lymphoma. Nat Rev
Immunol. 8:380–390. 2008. View
Article : Google Scholar : PubMed/NCBI
|
6
|
Graux C, Cools J, Michaux L, Vandenberghe
P and Hagemeijer A: Cytogenetics and molecular genetics of T-cell
acute lymphoblastic leukemia: From thymocyte to lymphoblast.
Leukemia. 20:1496–1510. 2006. View Article : Google Scholar : PubMed/NCBI
|
7
|
Palomero T, Lim WK, Odom DT, Sulis ML,
Real PJ, Margolin A, Barnes KC, O'Neil J, Neuberg D, Weng AP, et
al: NOTCH1 directly regulates c-MYC and activates a
feed-forward-loop transcriptional network promoting leukemic cell
growth. Proc Natl Acad Sci USA. 103:18261–18266. 2006. View Article : Google Scholar : PubMed/NCBI
|
8
|
Weng AP, Millholland JM, Yashiro-Ohtani Y,
Arcangeli ML, Lau A, Wai C, Del Bianco C, Rodriguez CG, Sai H,
Tobias J, et al: c-Myc is an important direct target of Notch1 in
T-cell acute lymphoblastic leukemia/lymphoma. Genes Dev.
20:2096–2109. 2006. View Article : Google Scholar : PubMed/NCBI
|
9
|
Vilimas T, Mascarenhas J, Palomero T,
Mandal M, Buonamici S, Meng F, Thompson B, Spaulding C, Macaroun S,
Alegre ML, et al: Targeting the NF-kappaB signaling pathway in
Notch1-induced T-cell leukemia. Nat Med. 13:70–77. 2007. View Article : Google Scholar : PubMed/NCBI
|
10
|
Palomero T, Sulis ML, Cortina M, Real PJ,
Barnes K, Ciofani M, Caparros E, Buteau J, Brown K, Perkins SL, et
al: Mutational loss of PTEN induces resistance to NOTCH1 inhibition
in T-cell leukemia. Nat Med. 13:1203–1210. 2007. View Article : Google Scholar : PubMed/NCBI
|
11
|
O'Neil J, Grim J, Strack P, Rao S,
Tibbitts D, Winter C, Hardwick J, Welcker M, Meijerink JP, Pieters
R, et al: FBW7 mutations in leukemic cells mediate NOTCH pathway
activation and resistance to gamma-secretase inhibitors. J Exp Med.
204:1813–1824. 2007. View Article : Google Scholar : PubMed/NCBI
|
12
|
Weng AP, Ferrando AA, Lee W, Morris JP IV,
Silverman LB, Sanchez-Irizarry C, Blacklow SC, Look AT and Aster
JC: Activating mutations of NOTCH1 in human T cell acute
lymphoblastic leukemia. Science. 306:269–271. 2004. View Article : Google Scholar : PubMed/NCBI
|
13
|
Ye F: MicroRNA expression and activity in
T-cell acute lymphoblastic leukemia. Oncotarget. 9:5445–5458. 2018.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Wallaert A, Van Loocke W, Hernandez L,
Taghon T, Speleman F and Van Vlierberghe P: Comprehensive miRNA
expression profiling in human T-cell acute lymphoblastic leukemia
by small RNA-sequencing. Sci Rep. 7:79012017. View Article : Google Scholar : PubMed/NCBI
|
15
|
Saba R, Goodman CD, Huzarewich RL,
Robertson C and Booth SA: A miRNA signature of prion induced
neurodegeneration. PLoS One. 3:e36522008. View Article : Google Scholar : PubMed/NCBI
|
16
|
Li Y, Chen P, Zu L, Liu B, Wang M and Zhou
Q: MicroRNA-338-3p suppresses metastasis of lung cancer cells by
targeting the EMT regulator Sox4. Am J Cancer Res. 6:127–140.
2016.PubMed/NCBI
|
17
|
Lister TA, Crowther D, Sutcliffe SB,
Glatstein E, Canellos GP, Young RC, Rosenberg SA, Coltman CA and
Tubiana M: Report of a committee convened to discuss the evaluation
and staging of patients with Hodgkin's disease: Cotswolds meeting.
J Clin Oncol. 7:1630–1636. 1989. View Article : Google Scholar : PubMed/NCBI
|
18
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2-ΔΔCT method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI
|
19
|
Sweetenham JW: Treatment of lymphoblastic
lymphoma in adults. Oncology (Williston Park). 23:1015–1020.
2009.PubMed/NCBI
|
20
|
Guo B, Liu L, Yao J, Ma R, Chang D, Li Z,
Song T and Huang C: miR-338-3p suppresses gastric cancer
progression through a PTEN-AKT axis by targeting P-REX2a. Mol
Cancer Res. 12:313–321. 2014. View Article : Google Scholar : PubMed/NCBI
|
21
|
Huang XH, Wang Q, Chen JS, Fu XH, Chen XL,
Chen LZ, Li W, Bi J, Zhang LJ, Fu Q, et al: Bead-based microarray
analysis of microRNA expression in hepatocellular carcinoma:
miR-338 is downregulated. Hepatol Res. 39:786–794. 2009. View Article : Google Scholar : PubMed/NCBI
|
22
|
Caramuta S, Egyhazi S, Rodolfo M, Witten
D, Hansson J, Larsson C and Lui WO: MicroRNA expression profiles
associated with mutational status and survival in malignant
melanoma. J Invest Dermatol. 130:2062–2070. 2010. View Article : Google Scholar : PubMed/NCBI
|
23
|
Chojnowski JL, Masuda K, Trau HA, Thomas
K, Capecchi M and Manley NR: Multiple roles for HOXA3 in regulating
thymus and parathyroid differentiation and morphogenesis in mouse.
Development. 141:3697–3708. 2014. View Article : Google Scholar : PubMed/NCBI
|
24
|
Manley NR and Capecchi MR: The role of
Hoxa-3 in mouse thymus and thyroid development. Development.
121:1989–2003. 1995.PubMed/NCBI
|
25
|
Zhang X, Liu G, Ding L, Jiang T, Shao S,
Gao Y and Lu Y: HOXA3 promotes tumor growth of human colon cancer
through activating EGFR/Ras/Raf/MEK/ERK signaling pathway. J Cell
Biochem. 119:2864–2874. 2018. View Article : Google Scholar : PubMed/NCBI
|
26
|
Lee RC, Feinbaum RL and Ambros V: The
C. elegans heterochronic gene lin-4 encodes small RNAs with
antisense complementarity to lin-14. Cell. 75:843–854. 1993.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Wightman B, Ha I and Ruvkun G:
Posttranscriptional regulation of the heterochronic gene lin-14 by
lin-4 mediates temporal pattern formation in C. elegans.
Cell. 75:855–862. 1993. View Article : Google Scholar : PubMed/NCBI
|
28
|
Guo H, Ingolia NT, Weissman JS and Bartel
DP: Mammalian microRNAs predominantly act to decrease target mRNA
levels. Nature. 466:835–840. 2010. View Article : Google Scholar : PubMed/NCBI
|
29
|
Bazzini AA, Lee MT and Giraldez AJ:
Ribosome profiling shows that miR-430 reduces translation before
causing mRNA decay in zebrafish. Science. 336:233–237. 2012.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Kohnken R, Porcu P and Mishra A: Overview
of the use of murine models in leukemia and lymphoma research.
Front Oncol. 7:222017. View Article : Google Scholar : PubMed/NCBI
|