1
|
Yuan P, Chen TH, Chen ZW and Lin XQ:
Calculation of life-time death probability due malignant tumors
based on a sampling survey area in China. Asian Pac J Cancer Prev.
15:4307–4309. 2014. View Article : Google Scholar : PubMed/NCBI
|
2
|
Omata M, Cheng AL, Kokudo N, Kudo M, Lee
JM, Jia J, Tateishi R, Han KH, Chawla YK, Shiina S, et al:
Asia-Pacific clinical practice guidelines on the management of
hepatocellular carcinoma: A 2017 update. Hepatol Int. 11:317–370.
2017. View Article : Google Scholar : PubMed/NCBI
|
3
|
Ma W, Wu L, Zhou F, Hong Z, Yuan Y and Liu
Z: T cell-associated immunotherapy for hepatocellular carcinoma.
Cell Physiol Biochem. 41:609–622. 2017. View Article : Google Scholar : PubMed/NCBI
|
4
|
Wang Z, Wu Z, Liu Y and Han W: New
development in CAR-T cell therapy. J Hematol Oncol. 10:532017.
View Article : Google Scholar : PubMed/NCBI
|
5
|
DeFrancesco L: CAR-T cell therapy seeks
strategies to harness cytokine storm. Nat Biotechnol. 32:6042014.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Klingemann H: Are natural killer cells
superior CAR drivers? Oncoimmunology. 3:e281472014. View Article : Google Scholar : PubMed/NCBI
|
7
|
Glienke W, Esser R, Priesner C, Suerth JD,
Schambach A, Wels WS, Grez M, Kloess S, Arseniev L and Koehl U:
Advantages and applications of CAR-expressing natural killer cells.
Front Pharmacol. 6:212015. View Article : Google Scholar : PubMed/NCBI
|
8
|
Bordon Y: Tumour immunology: Natural
killer cells spy greedy tumours. Nat Rev Immunol. 18:772018.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Rosenberg EB, Herberman RB, Levine PH,
Halterman RH, McCoy JL and Wunderlich JR: Lymphocyte cytotoxicity
reactions to leukemia-associated antigens in identical twins. Int J
Cancer. 9:648–658. 1972. View Article : Google Scholar : PubMed/NCBI
|
10
|
Qian X, Wang X and Jin H: Cell transfer
therapy for cancer: Past, present, and future. J Immunol Res.
2014:5259132014. View Article : Google Scholar : PubMed/NCBI
|
11
|
Vivier E, Raulet DH, Moretta A, Caligiuri
MA, Zitvogel L, Lanier LL, Yokoyama WM and Ugolini S: Innate or
adaptive immunity? The example of natural killer cells. Science.
331:44–49. 2011. View Article : Google Scholar : PubMed/NCBI
|
12
|
Bradley M, Zeytun A, Rafi-Janajreh A,
Nagarkatti PS and Nagarkatti M: Role of spontaneous and
interleukin-2-induced natural killer cell activity in the
cytotoxicity and rejection of Fas+ and Fas- tumor cells. Blood.
92:4248–4255. 1998.PubMed/NCBI
|
13
|
Screpanti V, Wallin RP, Ljunggren HG and
Grandien A: A central role for death receptor-mediated apoptosis in
the rejection of tumors by NK cells. J Immunol. 167:2068–2073.
2001. View Article : Google Scholar : PubMed/NCBI
|
14
|
Kayagaki N, Yamaguchi N, Nakayama M,
Takeda K, Akiba H, Tsutsui H, Okamura H, Nakanishi K, Okumura K and
Yagita H: Expression and function of TNF-related apoptosis-inducing
ligand on murine activated NK cells. J Immunol. 163:1906–1913.
1999.PubMed/NCBI
|
15
|
Brehm C, Huenecke S, Esser R, Kloess S,
Quaiser A, Betz S, Zimmermann O, Soerensen J, Passweg JR,
Klingebiel T, et al: Interleukin-2-stimulated natural killer cells
are less susceptible to mycophenolate mofetil than non-activated NK
cells: possible consequences for immunotherapy. Cancer Immunol
Immunother. 63:821–833. 2014. View Article : Google Scholar : PubMed/NCBI
|
16
|
Campbell KS and Hasegawa J: Natural killer
cell biology: An update and future directions. J Allergy Clin
Immunol. 132:536–544. 2013. View Article : Google Scholar : PubMed/NCBI
|
17
|
Guillerey C, Huntington ND and Smyth MJ:
Targeting natural killer cells in cancer immunotherapy. Nat
Immunol. 17:1025–1036. 2016. View Article : Google Scholar : PubMed/NCBI
|
18
|
Rezvani K, Rouce R, Liu E and Shpall E:
Engineering natural killer cells for cancer immunotherapy. Mol
Ther. 25:1769–1781. 2017. View Article : Google Scholar : PubMed/NCBI
|
19
|
Mehta RS and Rezvani K: Chimeric antigen
receptor expressing natural killer cells for the immunotherapy of
cancer. Front Immunol. 9:2832018. View Article : Google Scholar : PubMed/NCBI
|
20
|
Fasolo A, Sessa C, Gianni L and Broggini
M: Seminars in clinical pharmacology: An introduction to MET
inhibitors for the medical oncologist. Ann Oncol. 24:14–20. 2013.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Furge KA, Zhang YW and Vande Woude GF: Met
receptor tyrosine kinase: Enhanced signaling through adapter
proteins. Oncogene. 19:5582–5589. 2000. View Article : Google Scholar : PubMed/NCBI
|
22
|
Ma PC, Maulik G, Christensen J and Salgia
R: c-Met: Structure, functions and potential for therapeutic
inhibition. Cancer Metastasis Rev. 22:309–325. 2003. View Article : Google Scholar : PubMed/NCBI
|
23
|
Zhang YW, Su Y, Volpert OV and Vande Woude
GF: Hepatocyte growth factor/scatter factor mediates angiogenesis
through positive VEGF and negative thrombospondin 1 regulation.
Proc Natl Acad Sci USA. 100:12718–12723. 2003. View Article : Google Scholar : PubMed/NCBI
|
24
|
Zhuang PH, Xu L, Gao L, Lu W, Ruan LT and
Yang J: Correlations of microvascular blood flow of
contrast-enhanced ultrasound and HGF/c-Met signaling pathway with
clinicopathological features and prognosis of patients with
hepatocellular carcinoma. Onco Targets Ther. 10:847–857. 2017.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Bouattour M, Raymond E, Qin S, Cheng AL,
Stammberger U, Locatelli G and Faivre S: Recent developments of
c-Met as a therapeutic target in hepatocellular carcinoma.
Hepatology. 67:1132–1149. 2018. View Article : Google Scholar : PubMed/NCBI
|
26
|
Kim JH, Kim HS, Kim BJ, Jang HJ and Lee J:
Prognostic value of c-Met overexpression in hepatocellular
carcinoma: A meta-analysis and review. Oncotarget. 8:90351–90357.
2017.PubMed/NCBI
|
27
|
Yan S, Jiao X, Zou H and Li K: Prognostic
significance of c-Met in breast cancer: A meta-analysis of 6010
cases. Diagn Pathol. 10:622015. View Article : Google Scholar : PubMed/NCBI
|
28
|
Pyo JS, Kang G, Cho WJ and Choi SB:
Clinicopathological significance and concordance analysis of c-MET
immunohistochemistry in non-small cell lung cancers: A
meta-analysis. Pathol Res Pract. 212:710–716. 2016. View Article : Google Scholar : PubMed/NCBI
|
29
|
Liu Y, Yu XF, Zou J and Luo ZH: Prognostic
value of c-Met in colorectal cancer: A meta-analysis. World J
Gastroenterol. 21:3706–3710. 2015. View Article : Google Scholar : PubMed/NCBI
|
30
|
Xin Y, Jin D, Eppler S, Damico-Beyer LA,
Joshi A, Davis JD, Kaur S, Nijem I, Bothos J, Peterson A, et al:
Population pharmacokinetic analysis from phase I and phase II
studies of the humanized monovalent antibody, onartuzumab (MetMAb),
in patients with advanced solid tumors. J Clin Pharmacol.
53:1103–1111. 2013.PubMed/NCBI
|
31
|
Lohitesh K, Chowdhury R and Mukherjee S:
Resistance a major hindrance to chemotherapy in hepatocellular
carcinoma: An insight. Cancer Cell Int. 18:442018. View Article : Google Scholar : PubMed/NCBI
|
32
|
Zhang Q, Zhou M, Wu X, Li Z, Liu B, Gao W,
Yue J and Liu T: Promoting therapeutic angiogenesis of focal
cerebral ischemia using thrombospondin-4 (TSP4) gene-modified bone
marrow stromal cells (BMSCs) in a rat model. J Trans Med.
17:1112019. View Article : Google Scholar
|
33
|
Gandara C, Affleck V and Stoll EA:
Manufacture of third- generation lentivirus for preclinical use,
with process development considerations for translation to good
manufacturing practice. Hum Gene Ther Methods. 29:1–15. 2018.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Wang YF, Kunda PE, Lin JW, Wang H, Chen
XM, Liu QL and Liu T: Cytokine-induced killer cells co-cultured
with complete tumor antigen-loaded dendritic cells, have enhanced
selective cytotoxicity on carboplatin-resistant retinoblastoma
cells. Oncol Rep. 29:1841–1850. 2013. View Article : Google Scholar : PubMed/NCBI
|
35
|
Jackson HJ and Brentjens RJ: Overcoming
antigen escape with CAR T-cell therapy. Cancer Discov. 5:1238–1240.
2015. View Article : Google Scholar : PubMed/NCBI
|
36
|
Harjes U: CAR antigens beyond recognition.
Nat Rev Cancer. 18:7232018. View Article : Google Scholar : PubMed/NCBI
|
37
|
Zhang Q, Bi J, Zheng X, Chen Y, Wang H, Wu
W, Wang Z, Wu Q, Peng H, Wei H, et al: Blockade of the checkpoint
receptor TIGIT prevents NK cell exhaustion and elicits potent
anti-tumor immunity. Nature immunology. 19:723–732. 2018.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Orlando EJ, Han X, Tribouley C, Wood PA,
Leary RJ, Riester M, Levine JE, Qayed M, Grupp SA, Boyer M, et al:
Genetic mechanisms of target antigen loss in CAR19 therapy of acute
lymphoblastic leukemia. Nat Med. 24:1504–1506. 2018. View Article : Google Scholar : PubMed/NCBI
|
39
|
Li Y, Hermanson DL, Moriarity BS and
Kaufman DS: Human iPSC-derived natural killer cells engineered with
chimeric antigen receptors enhance anti-tumor activity. Cell Stem
Cell. 23:181–192, e185. 2018. View Article : Google Scholar : PubMed/NCBI
|
40
|
Oelsner S, Waldmann A, Billmeier A, Röder
J, Lindner A, Ullrich E, Marschalek R, Dotti G, Jung G,
Grosse-Hovest L, et al: Genetically engineered CAR NK cells display
selective cytotoxicity against FLT3-positive B-ALL and inhibit in
vivo leukemia growth. Int J Cancer. Mar 13–2019.(Epub ahead of
print). View Article : Google Scholar : PubMed/NCBI
|
41
|
Shiozawa M, Chang CH, Huang YC, Chen YC,
Chi MS, Hao HC, Chang YC, Takeda S, Chi KH and Wang YS:
Pharmacologically upregulated carcinoembryonic antigen-expression
enhances the cytolytic activity of genetically-modified chimeric
antigen receptor NK-92MI against colorectal cancer cells. BMC
Immunol. 19:272018. View Article : Google Scholar : PubMed/NCBI
|
42
|
Escors D and Breckpot K: Lentiviral
vectors in gene therapy: Their current status and future potential.
Arch Immunol Ther Exp (Warsz). 58:107–119. 2010. View Article : Google Scholar : PubMed/NCBI
|
43
|
Schambach A, Zychlinski D, Ehrnstroem B
and Baum C: Biosafety features of lentiviral vectors. Hum Gene
Ther. 24:132–142. 2013. View Article : Google Scholar : PubMed/NCBI
|