1
|
Chen Y, He Y and DeVivo MJ: Changing
demographics and injury profile of new traumatic spinal cord
injuries in the United States, 1972–2014. Arch Phys Med Rehabil.
97:1610–1619. 2016. View Article : Google Scholar : PubMed/NCBI
|
2
|
Lenehan B, Street J, Kwon BK, Noonan V,
Zhang H, Fisher CG and Dvorak MF: The epidemiology of traumatic
spinal cord injury in British Columbia, Canada. Spine (Phila Pa
1976). 37:321–329. 2012. View Article : Google Scholar : PubMed/NCBI
|
3
|
DeVivo MJ and Chen Y: Trends in new
injuries, prevalent cases, and aging with spinal cord injury. Arch
Phys Med Rehabil. 92:332–338. 2011. View Article : Google Scholar : PubMed/NCBI
|
4
|
Hurlbert RJ, Hadley MN, Walters BC, Aarabi
B, Dhall SS, Gelb DE, Rozzelle CJ, Ryken TC and Theodore N:
Pharmacological therapy for acute spinal cord injury. Neurosurgery.
76 (Suppl 1):S71–S83. 2015. View Article : Google Scholar : PubMed/NCBI
|
5
|
Scarisbrick IA, Sabharwal P, Cruz H,
Larsen N, Vandell AG, Blaber SI, Ameenuddin S, Papke LM, Fehlings
MG, Reeves RK, et al: Dynamic role of kallikrein 6 in traumatic
spinal cord injury. Eur J Neurosci. 24:1457–1469. 2010. View Article : Google Scholar
|
6
|
Lemarchant S, Pruvost M, Hébert M,
Gauberti M, Hommet Y, Briens A, Maubert E, Gueye Y, Féron F, Petite
D, et al: tPA promotes ADAMTS-4-induced CSPG degradation, thereby
enhancing neuroplasticity following spinal cord injury. Neurobiol
Dis. 66:28–42. 2014. View Article : Google Scholar : PubMed/NCBI
|
7
|
Koehn LM, Noor NM, Dong Q, Er SY, Rash LD,
King GF, Dziegielewska KM, Saunders NR and Habgood MD: Selective
inhibition of ASIC1a confers functional and morphological
neuroprotection following traumatic spinal cord injury. Version 2.
F1000Res. 5:18222016. View Article : Google Scholar : PubMed/NCBI
|
8
|
Liu NK, Wang XF, Lu QB and Xu XM: Altered
microRNA expression following traumatic spinal cord injury. Exp
Neurol. 219:424–429. 2009. View Article : Google Scholar : PubMed/NCBI
|
9
|
Ning B, Gao L, Liu RH, Liu Y, Zhang NS and
Chen ZY: microRNAs in spinal cord injury: Potential roles and
therapeutic implications. Int J Biol Sci. 10:997–1006. 2014.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Shin HY, Kim H, Kwon MJ, Hwang DH, Lee K
and Kim BG: Molecular and cellular changes in the lumbar spinal
cord following thoracic injury: Regulation by treadmill locomotor
training. PLoS One. 9:e882152014. View Article : Google Scholar : PubMed/NCBI
|
11
|
Yang Z, Lv Q, Wang Z, Dong X, Yang R and
Zhao W: Identification of crucial genes associated with rat
traumatic spinal cord injury. Mol Med Rep. 15:1997–2006. 2017.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Liu Q, Zhang B, Liu C and Zhao D:
Molecular mechanisms underlying the positive role of treadmill
training in locomotor recovery after spinal cord injury. Spinal
Cord. 55:441–446. 2017. View Article : Google Scholar : PubMed/NCBI
|
13
|
Barrett T, Wilhite SE, Ledoux P,
Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH,
Sherman PM, Holko M, et al: NCBI GEO: Archive for functional
genomics data sets-update. Nucleic Acids Res. 41:D991–D995. 2013.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Carvalho BS and Irizarry RA: A framework
for oligonucleotide microarray preprocessing. Bioinformatics.
26:2363–2367. 2010. View Article : Google Scholar : PubMed/NCBI
|
15
|
Ritchie ME, Phipson B, Wu D, Hu Y, Law CW,
Shi W and Smyth GK: Limma powers differential expression analyses
for RNA-sequencing and microarray studies. Nucleic Acids Res.
43:e472015. View Article : Google Scholar : PubMed/NCBI
|
16
|
Kolde R: pheatmap: Pretty Heatmaps. R
package version 0.6.1. 2013. http://CRAN.R-project.org/packageepheatmapOct
12–2015
|
17
|
Yu G, Wang LG, Han Y and He QY:
clusterProfiler: An R package for comparing biological themes among
gene clusters. OMICS. 16:284–287. 2012. View Article : Google Scholar : PubMed/NCBI
|
18
|
The Gene Ontology Consortium, . Expansion
of the gene ontology knowledgebase and resources. Nucleic Acids
Research. 45:D331–D338. 2017. View Article : Google Scholar : PubMed/NCBI
|
19
|
Mi H, Huang X, Muruganujan A, Tang H,
Mills C, Kang D and Thomas PD: PANTHER version 11: Expanded
annotation data from Gene Ontology and Reactome pathways, and data
analysis tool enhancements. Nucleic Acids Res. 45:D183–D189. 2017.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Kanehisa M and Goto S: KEGG: Kyoto
encyclopaedia of genes and genomes. Nucleic Acids Res. 28:27–30.
2000. View Article : Google Scholar : PubMed/NCBI
|
21
|
Szklarczyk D, Franceschini A, Wyder S,
Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos
A, Tsafou KP, et al: STRING v10: Protein-protein interaction
networks, integrated over the tree of life. Nucleic Acids Res.
43:D447–D452. 2015. View Article : Google Scholar : PubMed/NCBI
|
22
|
Shannon P, Markiel A, Ozier O, Baliga NS,
Wang JT, Ramage D, Amin N, Schwikowski B and Ideker T: Cytoscape: A
software environment for integrated models of biomolecular
interaction networks. Genome Res. 13:2498–2504. 2003. View Article : Google Scholar : PubMed/NCBI
|
23
|
Tang Y, Li M, Wang J, Pan Y and Wu FX:
CytoNCA: A cytoscape plugin for centrality analysis and evaluation
of protein interaction networks. Biosystems. 127:67–72. 2015.
View Article : Google Scholar : PubMed/NCBI
|
24
|
He X and Zhang J: Why do hubs tend to be
essential in protein networks? PLoS Genet. 2:e882006. View Article : Google Scholar : PubMed/NCBI
|
25
|
Wang J, Duncan D, Shi Z and Zhang B:
WEB-based GEne SeT AnaLysis Toolkit (WebGestalt): Update 2013.
Nucleic Acids Res. 41:W77–W83. 2013. View Article : Google Scholar : PubMed/NCBI
|
26
|
Gonzalez-Billault C, Jimenez-Mateos EM,
Caceres A, Diaz-Nido J, Wandosell F and Avila J:
Microtubule-associated protein 1B function during normal
development, regeneration, and pathological conditions in the
nervous system. J Neurobiol. 58:48–59. 2004. View Article : Google Scholar : PubMed/NCBI
|
27
|
Ma D, Nothias F, Boyne LJ and Fischer I:
Differential regulation of microtubule-associated protein 1B
(MAP1B) in rat CNS and PNS during development. J Neurosci Res.
49:319–332. 1997. View Article : Google Scholar : PubMed/NCBI
|
28
|
Gödel M, Temerinac D, Grahammer F,
Hartleben B, Kretz O, Riederer BM, Propst F, Kohl S and Huber TB:
Microtubule associated protein 1b (MAP1B) is a marker of the
microtubular cytoskeleton in podocytes but is not essential for the
function of the kidney filtration barrier in mice. PLoS One.
10:e01401162015. View Article : Google Scholar : PubMed/NCBI
|
29
|
Tortosa E, Montenegro-Venegas C, Benoist
M, Härtel S, González-Billault C, Esteban JA and Avila J:
Microtubule-associated protein 1B (MAP1B) is required for dendritic
spine development and synaptic maturation. J Biol Chem.
286:40638–40648. 2011. View Article : Google Scholar : PubMed/NCBI
|
30
|
Köttgen M, Benzing T, Simmen T, Tauber R,
Buchholz B, Feliciangeli S, Huber TB, Schermer B, Kramer-Zucker A,
Höpker K, et al: Trafficking of TRPP2 by PACS proteins represents a
novel mechanism of ion channel regulation. EMBO J. 24:705–716.
2005. View Article : Google Scholar : PubMed/NCBI
|
31
|
Liu WM, Wu JY, Li FC and Chen QX: Ion
channel blockers and spinal cord injury. J Neurosci Res.
89:791–801. 2011. View Article : Google Scholar : PubMed/NCBI
|
32
|
Kawaai K, Mizutani A, Shoji H, Ogawa N,
Ebisui E, Kuroda Y, Wakana S, Miyakawa T, Hisatsune C and Mikoshiba
K: IRBIT regulates CaMKIIα activity and contributes to
catecholamine homeostasis through tyrosine hydroxylase
phosphorylation. Proc Natl Acad Sci USA. 112:5515–5520. 2015.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Jauhari A, Singh T, Singh P, Parmar D and
Yadav S: Regulation of miR-34 family in neuronal development. Mol
Neurobiol. 55:936–945. 2018. View Article : Google Scholar : PubMed/NCBI
|
34
|
Aranha MM, Santos DM, Solá S, Steer CJ and
Rodrigues CM: miR-34a regulates mouse neural stem cell
differentiation. PLoS One. 6:e213962011. View Article : Google Scholar : PubMed/NCBI
|
35
|
Rokavec M, Li H, Jiang L and Hermeking H:
The p53/miR-34 axis in development and disease. J Mol Cell Biol.
6:214–230. 2014. View Article : Google Scholar : PubMed/NCBI
|
36
|
Zhu Y, Wu Y and Zhang R:
Electro-acupuncture promotes the proliferation of neural stem cells
and the survival of neurons by downregulating miR-449a in rat with
spinal cord injury. EXCLI J. 16:363–374. 2017.PubMed/NCBI
|
37
|
Han R, Ji X, Rong R, Li Y, Yao W, Yuan J,
Wu Q, Yang J, Yan W, Han L, et al: MiR-449a regulates autophagy to
inhibit silica-induced pulmonary fibrosis through targeting Bcl2. J
Mol Med (Berl). 94:1267–1279. 2016. View Article : Google Scholar : PubMed/NCBI
|
38
|
Kanno H, Ozawa H, Sekiguchi A and Itoi E:
The role of autophagy in spinal cord injury. Autophagy. 5:390–392.
2009. View Article : Google Scholar : PubMed/NCBI
|
39
|
Li H, Zhang Q, Yang X and Wang L: PPAR-γ
agonist rosiglitazone reduces autophagy and promotes functional
recovery in experimental traumaticspinal cord injury. Neurosci
Lett. 650:89–96. 2017. View Article : Google Scholar : PubMed/NCBI
|