1
|
Yetkin E, Ileri M and Waltenberger J:
Ecchymosis: A novel sign in patients with varicose veins. Clin
Hemorheol Microcirc. 68:413–419. 2018. View Article : Google Scholar : PubMed/NCBI
|
2
|
Li X, Jiang XY, Ge J, Wang J, Chen GJ, Xu
L, Xie DY, Yuan TY, Zhang DS, Zhang H, et al: Aberrantly expressed
lncRNAs in primary varicose great saphenous veins. PLoS One.
9:e861562014. View Article : Google Scholar : PubMed/NCBI
|
3
|
Labropoulos N, Tiongson J, Pryor L,
Tassiopoulos AK, Kang SS, Ashraf Mansour M and Baker WH: Definition
of venous reflux in lower-extremity veins. J Vasc Surg. 38:793–798.
2003. View Article : Google Scholar : PubMed/NCBI
|
4
|
Lim CS, Kiriakidis S, Paleolog EM and
Davies AH: Increased activation of the hypoxia-inducible factor
pathway in varicose veins. J Vasc Surg. 55:1427–1439. 2012.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Jacobs BN, Andraska EA, Obi AT and
Wakefield TW: Pathophysiology of varicose veins. J Vasc Surg Venous
Lymphat Disord. 5:460–467. 2017. View Article : Google Scholar : PubMed/NCBI
|
6
|
Raffetto JD and Khalil RA: Mechanisms of
varicose vein formation: Valve dysfunction and wall dilation.
Phlebology. 23:85–98. 2008. View Article : Google Scholar : PubMed/NCBI
|
7
|
Li S, Xu Z and Sheng J: tRNA-Derived small
RNA: A novel regulatory small non-coding RNA. Genes (Basel).
9:E2462018. View Article : Google Scholar : PubMed/NCBI
|
8
|
Anderson P and Ivanov P: tRNA fragments in
human health and disease. FEBS Lett. 588:4297–4304. 2014.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Luo S, He F, Luo J, Dou S, Wang Y, Guo A
and Lu J: Drosophila tsRNAs preferentially suppress general
translation machinery via antisense pairing and participate in
cellular starvation response. Nucleic Acids Res. 46:5250–5268.
2018. View Article : Google Scholar : PubMed/NCBI
|
10
|
Goodarzi H, Liu X, Nguyen H C, Zhang S,
Fish L and Tavazoie S F: Endogenous tRNA-derived fragments suppress
breast cancer progression via YBX1 displacement. Cell. 161:790–802.
2015. View Article : Google Scholar : PubMed/NCBI
|
11
|
Sobala A and Hutvagner G: Small RNAs
derived from the 5′end of tRNA can inhibit protein translation in
human cells. RNA Biol. 10:553–563. 2013. View Article : Google Scholar : PubMed/NCBI
|
12
|
Ivanov P, Emara MM, Villen J, Gygi SP and
Anderson P: Angiogenin-induced tRNA fragments inhibit translation
initiation. Mol Cell. 43:613–623. 2011. View Article : Google Scholar : PubMed/NCBI
|
13
|
Couvillion MT, Bounova G, Purdom E, Speed
TP and Collins K: A Tetrahymena Piwi bound to mature tRNA
3′fragments activates the exonuclease Xrn2 for RNA processing in
the nucleus. Mol Cell. 48:509–520. 2012. View Article : Google Scholar : PubMed/NCBI
|
14
|
Martinez G, Choudury SG and Slotkin RK:
tRNA-derived small RNAs target transposable element transcripts.
Nucleic Acids Res. 45:5142–5152. 2017. View Article : Google Scholar : PubMed/NCBI
|
15
|
Ruggero K, Guffanti A, Corradin A, Sharma
VK, De Bellis G, Corti G, Grassi A, Zanovello P, Bronte V, Ciminale
V and D'Agostino DM: Small noncoding RNAs in cells transformed by
human T-cell leukemia virus type 1: A role for a tRNA fragment as a
primer for reverse transcriptase. J Virol. 88:3612–3622. 2014.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Saikia M, Jobava R, Parisien M, Putnam A,
Krokowski D, Gao XH, Guan BJ, Yuan Y, Jankowsky E, Feng Z, et al:
Angiogenin-cleaved tRNA halves interact with cytochrome c,
protecting cells from apoptosis during osmotic stress. Mol Cell
Biol. 34:2450–2463. 2014. View Article : Google Scholar : PubMed/NCBI
|
17
|
Wang Z, Xiang L, Shao J and Yuan Z: The
3′CCACCA sequence of tRNAAla(UGC) is the motif that is important in
inducing Th1-like immune response, and this motif can be recognized
by Toll-like receptor 3. Clin Vaccine Immunol. 13:733–739. 2006.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Hafner M, Landthaler M, Burger L, Khorshid
M, Hausser J, Berninger P, Rothballer A, Ascano M Jr, Jungkamp AC,
Munschauer M, et al: Transcriptome-wide identification of
RNA-binding protein and microRNA target sites by PAR-CLIP. Cell.
141:129–141. 2010. View Article : Google Scholar : PubMed/NCBI
|
19
|
Wang Q, Li T, Xu K, Zhang W, Wang X, Quan
J, Jin W, Zhang M, Fan G, Wang MB and Shan W: The tRNA-Derived
small RNAs regulate gene expression through triggering
sequence-specific degradation of target transcripts in the oomycete
pathogen phytophthora sojae. Front Plant Sci. 7:19382016.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Haussecker D, Huang Y, Lau A, Parameswaran
P, Fire AZ and Kay MA: Human tRNA-derived small RNAs in the global
regulation of RNA silencing. RNA. 16:673–695. 2010. View Article : Google Scholar : PubMed/NCBI
|
21
|
Pekarsky Y, Balatti V, Palamarchuk A,
Rizzotto L, Veneziano D, Nigita G, Rassenti LZ, Pass HI, Kipps TJ,
Liu CG and Croce CM: Dysregulation of a family of short noncoding
RNAs, tsRNAs, in human cancer. Proc Natl Acad Sci USA.
113:5071–5076. 2016. View Article : Google Scholar : PubMed/NCBI
|
22
|
Balatti V, Pekarsky Y and Croce CM: Role
of the tRNA-derived small RNAs in Cancer: New potential biomarkers
and target for therapy. Adv Cancer Res. 135:173–187. 2017.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Chen Q, Yan M, Cao Z, Li X, Zhang Y, Shi
J, Feng GH, Peng H, Zhang X, Zhang Y, et al: Sperm tsRNAs
contribute to intergenerational inheritance of an acquired
metabolic disorder. Science. 351:397–400. 2016. View Article : Google Scholar : PubMed/NCBI
|
24
|
Garcia-Silva MR, Cabrera-Cabrera F, Güida
MC and Cayota A: Novel aspects of tRNA-derived small RNAs with
potential impact in infectious diseases. Adv Bioscience Biotechnol.
4:17–25. 2013. View Article : Google Scholar
|
25
|
Zheng LL, Xu WL, Liu S, Sun WJ, Li JH, Wu
J, Yang JH and Qu LH: tRF2Cancer: A web server to detect
tRNA-derived small RNA fragments (tRFs) and their expression in
multiple cancers. Nucleic Acids Res. 44:W185–W193. 2016. View Article : Google Scholar : PubMed/NCBI
|
26
|
Shannon P, Markiel A, Ozier O, Baliga NS,
Wang JT, Ramage D, Amin N, Schwikowski B and Ideker T: Cytoscape: A
software environment for integrated models of biomolecular
interaction networks. Genome Res. 13:2498–2504. 2003. View Article : Google Scholar : PubMed/NCBI
|
27
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Makki N, Thiel KW and Miller FJ Jr: The
epidermal growth factor receptor and its ligands in cardiovascular
disease. Int J Mol Sci. 14:20597–20613. 2013. View Article : Google Scholar : PubMed/NCBI
|
29
|
Olsson AK, Dimberg A, Kreuger J and
Claesson-Welsh L: VEGF receptor signalling-in control of vascular
function. Nat Rev Mol Cell Biol. 7:359–371. 2006. View Article : Google Scholar : PubMed/NCBI
|
30
|
Chen Y, Zhang Y, Deng Q, Shan N, Peng W,
Luo X, Zhang H, Baker PN, Tong C and Qi H: Inhibition of wnt
inhibitory factor 1 under hypoxic condition in human umbilical vein
endothelial cells promoted angiogenesis in vitro. Reprod Sci.
23:1348–1358. 2016. View Article : Google Scholar : PubMed/NCBI
|
31
|
Gosgnach W, Boixel C, Névo N, Poiraud T
and Michel JB: Nebivolol induces calcium-independent signaling in
endothelial cells by a possible beta-adrenergic pathway. J
Cardiovasc Pharmacol. 38:191–199. 2001. View Article : Google Scholar : PubMed/NCBI
|
32
|
Ge JJ, Zhao ZW, Zhou ZC, Wu S, Zhang R,
Pan FM and Abendroth DK: p38 MAPK inhibitor, CBS3830 limits
vascular remodelling in arterialised vein grafts. Heart Lung Circ.
22:751–758. 2013. View Article : Google Scholar : PubMed/NCBI
|
33
|
Sampath H and Ntambi JM: The role of
stearoyl-CoA desaturase in obesity, insulin resistance, and
inflammation. Ann N Y Acad Sci. 1243:47–53. 2011. View Article : Google Scholar : PubMed/NCBI
|
34
|
Liu X, Strable MS and Ntambi JM: Stearoyl
CoA desaturase 1: Role in cellular inflammation and stress. Adv
Nutr. 2:15–22. 2011. View Article : Google Scholar : PubMed/NCBI
|
35
|
Kim DW, Hwang HS, Kim DS, Sheen SH, Heo
DH, Hwang G, Kang SH, Kweon H, Jo YY, Kang SW, et al: Enhancement
of anti-inflammatory activity of PEP-1-FK506 binding protein by
silk fibroin peptide. J Microbiol Biotechnol. 22:494–500. 2012.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Schöniger S, Böttcher D, Theuss T and
Schoon HA: Expression of Toll-like receptors 2, 4 and 6 in equine
endometrial epithelial cells: A comparative in situ and in vitro
study. Res Vet Sci. 112:34–41. 2017. View Article : Google Scholar : PubMed/NCBI
|
37
|
Staniszewska A, Onida S and Davies AH:
Compression therapy for uncomplicated varicose veins-Too little for
too much? Phlebology. 34:148–150. 2019. View Article : Google Scholar : PubMed/NCBI
|
38
|
Song ZY, Wang F, Cui SX and Qu XJ:
Knockdown of CXCR4 Inhibits CXCL-induced angiogenesis in HUVECs
through downregulation of the MAPK/ERK and PI3K/AKT and the
Wnt/β-catenin pathways. Cancerinvestigation. 36:10–18. 2018.
|
39
|
Birdsey GM, Shah AV, Dufton N, Reynolds
LE, Osuna Almagro L, Yang Y, Aspalter IM, Khan ST, Mason JC, Dejana
E, et al: The endothelial transcription factor ERG promotes
vascular stability and growth through Wnt/β-catenin signaling. Dev
Cell. 32:82–96. 2015. View Article : Google Scholar : PubMed/NCBI
|
40
|
Goddard LM, Duchemin AL, Ramalingan H, Wu
B, Chen M, Bamezai S, Yang J, Li L, Morley MP, Wang T, et al:
Hemodynamic forces sculpt developing heart valves through a
KLF2-WNT9B paracrine signaling axis. Dev Cell. 43:274–289.e5. 2017.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Guo X, Zhu X, Zhao L, Li X, Cheng D and
Feng K: Tumor-associated calcium signal transducer 2 regulates
neovascularization of non-small-cell lung cancer via activating
ERK1/2 signaling pathway. Tumour Biol. 39:10104283176943242017.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Lv T, Liang W, Li L, Cui X, Wei X, Pan H
and Li B: Novel calcitonin gene-related
peptide/chitosan-strontium-calcium phosphate cement: Enhanced
proliferation of human umbilical vein endothelial cells in vitro. J
Biomed Mater Res B Appl Biomater. 107:19–28. 2019. View Article : Google Scholar : PubMed/NCBI
|
43
|
Li S, Ning H, Ye Y, Wei W, Guo R, Song Q,
Liu L, Liu Y, Na L, Niu Y, et al: Increasing extracellular
Ca2+ sensitizes TNF-alpha-induced vascular cell adhesion
molecule-1 (VCAM-1) via a TRPC1/ERK1/2/NFκB-dependent pathway in
human vascular endothelial cells. Biochim Biophys Acta Mol Cell
Res. 1864:1566–1577. 2017. View Article : Google Scholar : PubMed/NCBI
|
44
|
Xuan H, Yuan W, Chang H, Liu M and Hu F:
Anti-inflammatory effects of Chinese propolis in
lipopolysaccharide-stimulated human umbilical vein endothelial
cells by suppressing autophagy and MAPK/NF-κB signaling pathway.
Inflammopharmacology. 27:561–571. 2019. View Article : Google Scholar : PubMed/NCBI
|
45
|
Sun Y, Kang L, Li J, Liu H, Wang Y, Wang C
and Zou Y: Advanced glycation end products impair the functions of
saphenous vein but not thoracic artery smooth muscle cells through
RAGE/MAPK signalling pathway in diabetes. J Cell Mol Med.
20:1945–1955. 2016. View Article : Google Scholar : PubMed/NCBI
|
46
|
Liu YW, Zuo PY, Zha XN, Chen XL, Zhang R,
He XX and Liu CY: Octacosanol enhances the proliferation and
migration of human umbilical vein endothelial cells via activation
of the PI3K/Akt and MAPK/Erk pathways. Lipids. 50:241–251. 2015.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Lattimer CR, Kalodiki E, Geroulakos G,
Hoppensteadt D and Fareed J: Are inflammatory biomarkers increased
in varicose vein blood? Clin Appl Thromb Hemost. 22:656–664. 2016.
View Article : Google Scholar : PubMed/NCBI
|
48
|
Shadrina A, Tsepilov Y, Smetanina M,
Voronina E, Seliverstov E, Ilyukhin E, Kirienko A, Zolotukhin I and
Filipenko M: Polymorphisms of genes involved in inflammation and
blood vessel development influence the risk of varicose veins. Clin
Genet. 94:191–199. 2018. View Article : Google Scholar : PubMed/NCBI
|
49
|
Qin X, Tian J, Zhang P, Fan Y, Chen L,
Guan Y, Fu Y, Zhu Y, Chien S and Wang N: Laminar shear stress
up-regulates the expression of stearoyl-CoA desaturase-1 in
vascular endothelial cells. Cardiovasc Res. 74:506–514. 2007.
View Article : Google Scholar : PubMed/NCBI
|
50
|
Van Snick J: Interleukin-6: An overview.
Annu Rev Immunol. 8:253–278. 1990. View Article : Google Scholar : PubMed/NCBI
|
51
|
Tamura Y, Phan C, Tu L, Le Hiress M,
Thuillet R, Jutant EM, Fadel E, Savale L, Huertas A, Humbert M and
Guignabert C: Ectopic upregulation of membrane-bound IL6R drives
vascular remodeling in pulmonary arterial hypertension. J Clin
Invest. 128:1956–1970. 2018. View Article : Google Scholar : PubMed/NCBI
|