1
|
Sferra A, Fattori F, Rizza T, Flex E,
Bellacchio E, Bruselles A, Petrini S, Cecchetti S, Teson M,
Restaldi F, et al: Defective kinesin binding of TUBB2A causes
progressive spastic ataxia syndrome resembling sacsinopathy. Hum
Mol Genet. 27:1892–1904. 2018. View Article : Google Scholar : PubMed/NCBI
|
2
|
Luscan R, Mechaussier S, Paul A, Tian G,
Gerard X, Defoort-Dellhemmes S, Loundon N, Audo I, Bonnin S,
LeGargasson JF, et al: Mutations in TUBB4B cause a distinctive
sensorineural disease. Am J Hum Genet. 101:1006–1012. 2017.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Feng R, Sang Q, Kuang Y, Sun X, Yan Z,
Zhang S, Shi J, Tian G, Luchniak A, Fukuda Y, et al: Mutations in
TUBB8 and human oocyte meiotic arrest. N Engl J Med. 374:223–232.
2016. View Article : Google Scholar : PubMed/NCBI
|
4
|
Martin M and Akhmanova A: Coming into
focus: Mechanisms of microtubule minus-end organization. Trends
Cell Biol. 28:574–588. 2018. View Article : Google Scholar : PubMed/NCBI
|
5
|
Aher A and Akhmanova A: Tipping
microtubule dynamics, one protofilament at a time. Curr Opin Cell
Biol. 50:86–93. 2018. View Article : Google Scholar : PubMed/NCBI
|
6
|
Akhmanova A and Steinmetz MO: Control of
microtubule organization and dynamics: Two ends in the limelight.
Nat Rev Mol Cell Biol. 16:711–726. 2015. View Article : Google Scholar : PubMed/NCBI
|
7
|
Huynh W and Vale RD: Disease-associated
mutations in human BICD2 hyperactivate motility of dynein-dynactin.
J Cell Biol. 216:3051–3060. 2017. View Article : Google Scholar : PubMed/NCBI
|
8
|
Lewis WR, Malarkey EB, Tritschler D, Bower
R, Pasek RC, Porath JD, Birket SE, Saunier S, Antignac C, Knowles
MR, et al: Mutation of growth arrest specific 8 reveals a role in
motile cilia function and human disease. PLoS Genet.
12:e10062202016. View Article : Google Scholar : PubMed/NCBI
|
9
|
Decker JM, Kruger L, Sydow A, Dennissen
FJ, Siskova Z, Mandelkow E and Mandelkow EM: The Tau/A152T
mutation, a risk factor for frontotemporal-spectrum disorders,
leads to NR2B receptor-mediated excitotoxicity. EMBO Rep.
17:552–569. 2016. View Article : Google Scholar : PubMed/NCBI
|
10
|
Frickey T and Lupas AN: Phylogenetic
analysis of AAA proteins. J Struct Biol. 146:2–10. 2004. View Article : Google Scholar : PubMed/NCBI
|
11
|
Vale RD: AAA proteins. Lords of the ring.
J Cell Biol. 150:F13–E19. 2000. View Article : Google Scholar : PubMed/NCBI
|
12
|
Buster D, McNally K and McNally FJ:
Katanin inhibition prevents the redistribution of gamma-tubulin at
mitosis. J Cell Sci. 115:1083–1092. 2002.PubMed/NCBI
|
13
|
Sharp DJ and Ross JL: Microtubule-severing
enzymes at the cutting edge. J Cell Sci. 125:2561–2569. 2012.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Zhang D, Rogers GC, Buster DW and Sharp
DJ: Three microtubule severing enzymes contribute to the
‘Pacman-flux’ machinery that moves chromosomes. J Cell Biol.
177:231–242. 2007. View Article : Google Scholar : PubMed/NCBI
|
15
|
Zhang D, Grode KD, Stewman SF,
Diaz-Valencia JD, Liebling E, Rath U, Riera T, Currie JD, Buster
DW, Asenjo AB, et al: Drosophila katanin is a microtubule
depolymerase that regulates cortical-microtubule plus-end
interactions and cell migration. Nat Cell Biol. 13:361–370. 2011.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Srayko M, O'Toole ET, Hyman AA and
Muller-Reichert T: Katanin disrupts the microtubule lattice and
increases polymer number in C. elegans meiosis. Curr Biol.
16:1944–1949. 2006. View Article : Google Scholar : PubMed/NCBI
|
17
|
Errico A, Ballabio A and Rugarli EI:
Spastin, the protein mutated in autosomal dominant hereditary
spastic paraplegia, is involved in microtubule dynamics. Hum Mol
Genet. 11:153–163. 2002. View Article : Google Scholar : PubMed/NCBI
|
18
|
Banks G, Lassi G, Hoerder-Suabedissen A,
Tinarelli F, Simon MM, Wilcox A, Lau P, Lawson TN, Johnson S,
Rutman A, et al: A missense mutation in Katnal1 underlies
behavioural, neurological and ciliary anomalies. Mol Psychiatry.
23:713–722. 2018. View Article : Google Scholar : PubMed/NCBI
|
19
|
Mishra-Gorur K, Caglayan AO, Schaffer AE,
Chabu C, Henegariu O, Vonhoff F, Akgümüş GT, Nishimura S, Han W, Tu
S, et al: Mutations in KATNB1 cause complex cerebral malformations
by disrupting asymmetrically dividing neural progenitors. Neuron.
84:1226–1239. 2014. View Article : Google Scholar : PubMed/NCBI
|
20
|
Mao CX, Xiong Y, Xiong Z, Wang Q, Zhang YQ
and Jin S: Microtubule-severing protein Katanin regulates
neuromuscular junction development and dendritic elaboration in
Drosophila. Development. 141:1064–1074. 2014. View Article : Google Scholar : PubMed/NCBI
|
21
|
Stewart A, Tsubouchi A, Rolls MM, Tracey
WD and Sherwood NT: Katanin p60-like1 promotes microtubule growth
and terminal dendrite stability in the larval class IV sensory
neurons of Drosophila. J Neurosci. 32:11631–11642. 2012. View Article : Google Scholar : PubMed/NCBI
|
22
|
O'Donnell L, Rhodes D, Smith SJ, Merriner
DJ, Clark BJ, Borg C, Whittle B, O'Connor AE, Smith LB, McNally FJ,
et al: An essential role for katanin p80 and microtubule severing
in male gamete production. PLoS Genet. 8:e10026982012. View Article : Google Scholar : PubMed/NCBI
|
23
|
Smith LB, Milne L, Nelson N, Eddie S,
Brown P, Atanassova N, O'Bryan MK, O'Donnell L, Rhodes D, Wells S,
et al: KATNAL1 regulation of sertoli cell microtubule dynamics is
essential for spermiogenesis and male fertility. PLoS Genet.
8:e10026972012. View Article : Google Scholar : PubMed/NCBI
|
24
|
Chen B, Zhang Z, Sun X, Kuang Y, Mao X,
Wang X, Yan Z, Li B, Xu Y, Yu M, et al: Biallelic mutations in
PATL2 cause female infertility characterized by oocyte maturation
arrest. Am J Hum Genet. 101:609–615. 2017. View Article : Google Scholar : PubMed/NCBI
|
25
|
Nguyen AL, Marin D, Zhou A, Gentilello AS,
Smoak EM, Cao Z, Fedick A, Wang Y, Taylor D, Scott RT Jr, et al:
Identification and characterization of Aurora kinase B and C
variants associated with maternal aneuploidy. Mol Hum Reprod.
23:406–416. 2017. View Article : Google Scholar : PubMed/NCBI
|
26
|
Caburet S, Arboleda VA, Llano E, Overbeek
PA, Barbero JL, Oka K, Harrison W, Vaiman D, Ben-Neriah Z,
García-Tuñón I, et al: Mutant cohesin in premature ovarian failure.
N Engl J Med. 370:943–949. 2014. View Article : Google Scholar : PubMed/NCBI
|
27
|
Sonbuchner TM, Rath U and Sharp DJ: KL1 is
a novel microtubule severing enzyme that regulates mitotic spindle
architecture. Cell Cycle. 9:2403–2411. 2010. View Article : Google Scholar : PubMed/NCBI
|
28
|
Pimenta-Marques A, Bento I, Lopes CA,
Duarte P, Jana SC and Bettencourt-Dias M: A mechanism for the
elimination of the female gamete centrosome in Drosophila
melanogaster. Science. 353:aaf48662016. View Article : Google Scholar : PubMed/NCBI
|
29
|
Connolly AA, Osterberg V, Christensen S,
Price M, Lu C, Chicas-Cruz K, Lockery S, Mains PE and Bowerman B:
Caenorhabditis elegans oocyte meiotic spindle pole assembly
requires microtubule severing and the calponin homology domain
protein ASPM-1. Mol Biol Cell. 25:1298–1311. 2014. View Article : Google Scholar : PubMed/NCBI
|
30
|
Kim JS, Kim EJ, Oh JS, Park IC and Hwang
SG: CIP2A modulates cell-cycle progression in human cancer cells by
regulating the stability and activity of Plk1. Cancer Res.
73:6667–6678. 2013. View Article : Google Scholar : PubMed/NCBI
|
31
|
Patel H, Zich J, Serrels B, Rickman C,
Hardwick KG, Frame MC and Brunton VG: Kindlin-1 regulates mitotic
spindle formation by interacting with integrins and Plk-1. Nat
Commun. 4:20562013. View Article : Google Scholar : PubMed/NCBI
|
32
|
Eot-Houllier G, Venoux M, Vidal-Eychenie
S, Hoang MT, Giorgi D and Rouquier S: Plk1 regulates both ASAP
localization and its role in spindle pole integrity. J Biol Chem.
285:29556–29568. 2010. View Article : Google Scholar : PubMed/NCBI
|
33
|
Zhou CX, Shi LY, Li RC, Liu YH, Xu BQ, Liu
JW, Yuan B, Yang ZX, Ying XY and Zhang D: GTPase-activating protein
Elmod2 is essential for meiotic progression in mouse oocytes. Cell
Cycle. 16:852–860. 2017. View Article : Google Scholar : PubMed/NCBI
|
34
|
Zhang XL, Liu P, Yang ZX, Zhao JJ, Gao LL,
Yuan B, Shi LY, Zhou CX, Qiao HF, Liu YH, et al: Pnma5 is essential
to the progression of meiosis in mouse oocytes through a chain of
phosphorylation. Oncotarget. 8:96809–96825. 2017.PubMed/NCBI
|
35
|
Dinkelmann MV, Zhang H, Skop AR and White
JG: SPD-3 is required for spindle alignment in Caenorhabditis
elegans embryos and localizes to mitochondria. Genetics.
177:1609–1620. 2007. View Article : Google Scholar : PubMed/NCBI
|
36
|
Kong XW, Wang DH, Zhou CJ, Zhou HX and
Liang CG: Loss of function of KIF1B impairs oocyte meiotic
maturation and early embryonic development in mice. Mol Reprod Dev.
83:1027–1040. 2016. View Article : Google Scholar : PubMed/NCBI
|
37
|
Maccarinelli F, Regoni M, Carmona F, Poli
M, Meyron-Holtz EG and Arosio P: Mitochondrial ferritin deficiency
reduces male fertility in mice. Reprod Fertil Dev. 29:2005–2010.
2017. View Article : Google Scholar : PubMed/NCBI
|
38
|
Wang M, Huang YP, Wu H, Song K, Wan C, Chi
AN, Xiao YM and Zhao XY: Mitochondrial complex I deficiency leads
to the retardation of early embryonic development in Ndufs4
knockout mice. Peer J. 5:e33392017. View Article : Google Scholar : PubMed/NCBI
|
39
|
May-Panloup P, Boucret L, Chao de la Barca
JM, Desquiret-Dumas V, Ferre-L'Hotellier V, Moriniere C, Descamps
P, Procaccio V and Reynier P: Ovarian ageing: The role of
mitochondria in oocytes and follicles. Hum Reprod Update.
22:725–743. 2016. View Article : Google Scholar : PubMed/NCBI
|
40
|
Ben-Meir A, Burstein E, Borrego-Alvarez A,
Chong J, Wong E, Yavorska T, Naranian T, Chi M, Wang Y, Bentov Y,
et al: Coenzyme Q10 restores oocyte mitochondrial function and
fertility during reproductive aging. Aging Cell. 14:887–895. 2015.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Bartolak-Suki E, Imsirovic J, Nishibori Y,
Krishnan R and Suki B: Regulation of mitochondrial structure and
dynamics by the cytoskeleton and mechanical factors. Int J Mol Sci.
18(pii): E18122017. View Article : Google Scholar : PubMed/NCBI
|
42
|
Fu L, Dong Q, He J, Wang X, Xing J, Wang
E, Qiu X and Li Q: SIRT4 inhibits malignancy progression of NSCLCs,
through mitochondrial dynamics mediated by the ERK-Drp1 pathway.
Oncogene. 36:2724–2736. 2017. View Article : Google Scholar : PubMed/NCBI
|
43
|
Wang C, Du W, Su QP, Zhu M, Feng P, Li Y,
Zhou Y, Mi N, Zhu Y, Jiang D, et al: Dynamic tubulation of
mitochondria drives mitochondrial network formation. Cell Res.
25:1108–1120. 2015. View Article : Google Scholar : PubMed/NCBI
|
44
|
Fu C, Jain D, Costa J, Velve-Casquillas G
and Tran PT: mmb1p binds mitochondria to dynamic microtubules. Curr
Biol. 21:1431–1439. 2011. View Article : Google Scholar : PubMed/NCBI
|