1
|
Xuan K, Li B, Guo H, Sun W, Kou X, He X,
Zhang Y, Sun J, Liu A, Liao L, et al: Deciduous autologous tooth
stem cells regenerate dental pulp after implantation into injured
teeth. Sci Transl Med. 10:eaaf32272018. View Article : Google Scholar : PubMed/NCBI
|
2
|
Xia Y, Chen H, Zhang F, Bao C, Weir MD,
Reynolds MA, Ma J, Gu N and Xu HHK: Gold nanoparticles in
injectable calcium phosphate cement enhance osteogenic
differentiation of human dental pulp stem cells. Nanomedicine.
14:35–45. 2018. View Article : Google Scholar : PubMed/NCBI
|
3
|
Martin-Del-Campo M, Rosales-Ibanez R,
Alvarado K, Sampedro JG, Garcia-Sepulveda CA, Deb S, San Román J
and Rojo L: Strontium folate loaded biohybrid scaffolds seeded with
dental pulp stem cells induce in vivo bone regeneration in critical
sized defects. Biomater Sci. 4:1596–1604. 2016. View Article : Google Scholar : PubMed/NCBI
|
4
|
Farges JC, Alliot-Licht B, Renard E,
Ducret M, Gaudin A, Smith AJ and Cooper PR: Dental pulp defence and
repair mechanisms in dental caries. Mediators Inflamm.
2015:2302512015. View Article : Google Scholar : PubMed/NCBI
|
5
|
Fernandez MR, Goettems ML, Demarco FF and
Correa MB: Is obesity associated to dental caries in Brazilian
schoolchildren? Braz Oral Res. 31:e832017. View Article : Google Scholar : PubMed/NCBI
|
6
|
Louvrier A, Euvrard E, Nicod L, Rolin G,
Gindraux F, Pazart L, Houdayer C, Risold PY, Meyer F and Meyer C:
Odontoblastic differentiation of dental pulp stem cells from
healthy and carious teeth on an original PCL-based 3D scaffold. Int
Endod J. 51 (Suppl 4):e252–e263. 2018. View Article : Google Scholar : PubMed/NCBI
|
7
|
Gnanasegaran N, Govindasamy V and Abu
Kasim NH: Differentiation of stem cells derived from carious teeth
into dopaminergic-like cells. Int Endod J. 49:937–949. 2016.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Werle SB, Lindemann D, Steffens D, Demarco
FF, de Araujo FB, Pranke P and Casagrande L: Carious deciduous
teeth are a potential source for dental pulp stem cells. Clin Oral
Investig. 20:75–81. 2016. View Article : Google Scholar : PubMed/NCBI
|
9
|
Ma D, Gao J, Yue J, Yan W, Fang F and Wu
B: Changes in proliferation and osteogenic differentiation of stem
cells from deep caries in vitro. J Endod. 38:796–802. 2012.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Sinclair KL, Mafi P, Mafi R and Khan WS:
The use of growth factors and mesenchymal stem cells in
orthopaedics: In particular, their use in Fractures and Non-Unions:
A systematic review. Curr Stem Cell Res Ther. 12:312–325. 2017.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Augustyniak E, Trzeciak T, Richter M,
Kaczmarczyk J and Suchorska W: The role of growth factors in stem
cell-directed chondrogenesis: A real hope for damaged cartilage
regeneration. Int Orthop. 39:995–1003. 2015. View Article : Google Scholar : PubMed/NCBI
|
12
|
Hankenson KD, Gagne K and Shaughnessy M:
Extracellular signaling molecules to promote fracture healing and
bone regeneration. Adv Drug Deliv Rev. 94:3–12. 2015. View Article : Google Scholar : PubMed/NCBI
|
13
|
Kim Y and Liu JC: Protein-engineered
microenvironments can promote endothelial differentiation of human
mesenchymal stem cells in the absence of exogenous growth factors.
Biomater Sci. 4:1761–1772. 2016. View Article : Google Scholar : PubMed/NCBI
|
14
|
Trosan P, Javorkova E, Zajicova A, Hajkova
M, Hermankova B, Kossl J, Krulova M and Holan V: The Supportive
Role of insulin-like growth factor-I in the differentiation of
murine mesenchymal stem cells into corneal-like cells. Stem Cells
Dev. 25:874–881. 2016. View Article : Google Scholar : PubMed/NCBI
|
15
|
Chen CY, Tseng KY, Lai YL, Chen YS, Lin FH
and Lin S: Overexpression of insulin-like growth factor 1 enhanced
the osteogenic capability of aging bone marrow mesenchymal stem
cells. Theranostics. 7:1598–1611. 2017. View Article : Google Scholar : PubMed/NCBI
|
16
|
Shi C, Zhao Y, Yang Y, Chen C, Hou X, Shao
J, Yao H, Li Q, Xia Y and Dai J: Collagen-binding VEGF targeting
the cardiac extracellular matrix promotes recovery in porcine
chronic myocardial infarction. Biomater Sci. 6:356–363. 2018.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Rybalko VY, Pham CB, Hsieh PL, Hammers DW,
Merscham-Banda M, Suggs LJ and Farrar RP: Controlled delivery of
SDF-1α and IGF-1: CXCR4(+) cell recruitment and functional skeletal
muscle recovery. Biomater Sci. 3:1475–1486. 2015. View Article : Google Scholar : PubMed/NCBI
|
18
|
Feng X, Huang D, Lu X, Feng G, Xing J, Lu
J, Xu K, Xia W, Meng Y, Tao T, et al: Insulin-like growth factor 1
can promote proliferation and osteogenic differentiation of human
dental pulp stem cells via mTOR pathway. Dev Growth Differ.
56:615–624. 2014. View Article : Google Scholar : PubMed/NCBI
|
19
|
Yu Y, Mu J, Fan Z, Lei G, Yan M, Wang S,
Tang C, Wang Z, Yu J and Zhang G: Insulin-like growth factor 1
enhances the proliferation and osteogenic differentiation of human
periodontal ligament stem cells via ERK and JNK MAPK pathways.
Histochem Cell Biol. 137:513–525. 2012. View Article : Google Scholar : PubMed/NCBI
|
20
|
Bai Y, Li P, Yin G, Huang Z, Liao X, Chen
X and Yao Y: BMP-2, VEGF and bFGF synergistically promote the
osteogenic differentiation of rat bone marrow-derived mesenchymal
stem cells. Biotechnol Lett. 35:301–308. 2013. View Article : Google Scholar : PubMed/NCBI
|
21
|
Lee JH, Um S, Jang JH and Seo BM: Effects
of VEGF and FGF-2 on proliferation and differentiation of human
periodontal ligament stem cells. Cell Tissue Res. 348:475–484.
2012. View Article : Google Scholar : PubMed/NCBI
|
22
|
Dicarlo M, Bianchi N, Ferretti C, Orciani
M, Di Primio R and Mattioli-Belmonte M: Evidence supporting a
paracrine effect of IGF-1/VEGF on human mesenchymal stromal cell
commitment. Cells Tissues Organs. 201:333–341. 2016. View Article : Google Scholar : PubMed/NCBI
|
23
|
Zhang J, Liu X, Li H, Chen C, Hu B, Niu X,
Li Q, Zhao B, Xie Z and Wang Y: Exosomes/tricalcium phosphate
combination scaffolds can enhance bone regeneration by activating
the PI3K/Akt signaling pathway. Stem Cell Res Ther. 7:1362016.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Wu X, Zheng S, Ye Y, Wu Y, Lin K and Su J:
Enhanced osteogenic differentiation and bone regeneration of
poly(lactic-co-glycolic acid) by graphene via activation of
PI3K/Akt/GSK-3β/β-catenin signal circuit. Biomater Sci.
6:1147–1158. 2018. View Article : Google Scholar : PubMed/NCBI
|
25
|
Iyer S, Viernes DR, Chisholm JD, Margulies
BS and Kerr WG: SHIP1 regulates MSC numbers and their osteolineage
commitment by limiting induction of the PI3K/Akt/βcatenin/Id2 axis.
Stem Cells Dev. 23:2336–2351. 2014. View Article : Google Scholar : PubMed/NCBI
|
26
|
Ma D, Cui L, Gao J, Yan W, Liu Y, Xu S and
Wu B: Proteomic analysis of mesenchymal stem cells from normal and
deep carious dental pulp. PLoS One. 9:e970262014. View Article : Google Scholar : PubMed/NCBI
|
27
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Pan Y, Chen J, Yu Y, Dai K, Wang J and Liu
C: Enhancement of BMP-2-mediated angiogenesis and osteogenesis by
2-N,6-O-sulfated chitosan in bone regeneration. Biomater Sci.
6:431–439. 2018. View Article : Google Scholar : PubMed/NCBI
|
29
|
Gangadaran P, Rajendran RL, Lee HW,
Kalimuthu S, Hong CM, Jeong SY, Lee SW, Lee J and Ahn BC:
Extracellular vesicles from mesenchymal stem cells activates VEGF
receptors and accelerates recovery of hindlimb ischemia. J Control
Release. 264:112–126. 2017. View Article : Google Scholar : PubMed/NCBI
|
30
|
Thekkeparambil Chandrabose S, Sriram S,
Subramanian S, Cheng S, Ong WK, Rozen S, Kasim NHA and Sugii S:
Amenable epigenetic traits of dental pulp stem cells underlie high
capability of xeno-free episomal reprogramming. Stem Cell Res Ther.
9:682018. View Article : Google Scholar : PubMed/NCBI
|
31
|
Schreier C, Rothmiller S, Scherer MA,
Rummel C, Steinritz D, Thiermann H and Schmidt A: Mobilization of
human mesenchymal stem cells through different cytokines and growth
factors after their immobilization by sulfur mustard. Toxicol Lett.
293:105–111. 2018. View Article : Google Scholar : PubMed/NCBI
|
32
|
Alarcin E, Lee TY, Karuthedom S, Mohammadi
M, Brennan MA, Lee DH, Marrella A, Zhang J, Syla D, Zhang YS, et
al: Injectable shear-thinning hydrogels for delivering osteogenic
and angiogenic cells and growth factors. Biomater Sci. 6:1604–1615.
2018. View Article : Google Scholar : PubMed/NCBI
|
33
|
Moeller M, Pink C, Endlich N, Endlich K,
Grabe HJ, Volzke H, Dörr M, Nauck M, Lerch MM, Köhling R, et al:
Mortality is associated with inflammation, anemia, specific
diseases and treatments, and molecular markers. PLoS One.
12:e1759092017. View Article : Google Scholar
|
34
|
Schminke B, Vom Orde F, Gruber R,
Schliephake H, Burgers R and Miosge N: The pathology of bone tissue
during peri-implantitis. J Dent Res. 94:354–361. 2015. View Article : Google Scholar : PubMed/NCBI
|
35
|
Chang PC, Cirelli JA, Jin Q, Seol YJ,
Sugai JV, D'Silva NJ, Danciu TE, Chandler LA, Sosnowski BA and
Giannobile WV: Adenovirus encoding human platelet-derived growth
factor-B delivered to alveolar bone defects exhibits safety and
biodistribution profiles favorable for clinical use. Hum Gene Ther.
20:486–496. 2009. View Article : Google Scholar : PubMed/NCBI
|
36
|
Zhang C, Hong FF, Wang CC, Li L, Chen JL,
Liu F, Quan RF and Wang JF: TRIB3 inhibits proliferation and
promotes osteogenesis in hBMSCs by regulating the ERK1/2 signaling
pathway. Sci Rep. 7:103422017. View Article : Google Scholar : PubMed/NCBI
|
37
|
Chen FM, Chen R, Wang XJ, Sun HH and Wu
ZF: In vitro cellular responses to scaffolds containing two
microencapulated growth factors. Biomaterials. 30:5215–5224. 2009.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Koo T, Park SW, Jo DH, Kim D, Kim JH, Cho
HY, Kim J, Kim JH and Kim JS: CRISPR-LbCpf1 prevents choroidal
neovascularization in a mouse model of age-related macular
degeneration. Nat Commun. 9:18552018. View Article : Google Scholar : PubMed/NCBI
|
39
|
Du J, Xie P, Lin S, Wu Y, Zeng D, Li Y and
Jiang X: Time-Phase sequential utilization of adipose-derived
mesenchymal stem cells on mesoporous bioactive glass for
restoration of critical size bone defects. ACS Appl Mater
Interfaces. 10:28340–28350. 2018. View Article : Google Scholar : PubMed/NCBI
|
40
|
Deng L, Hu G, Jin L, Wang C and Niu H:
Involvement of microRNA-23b in TNF-α-reduced BMSC osteogenic
differentiation via targeting runx2. J Bone Miner Metab.
36:648–660. 2018. View Article : Google Scholar : PubMed/NCBI
|
41
|
Kim KM and Jang WG: Zaluzanin C (ZC)
induces osteoblast differentiation through regulating of osteogenic
genes expressions in early stage of differentiation. Bioorg Med
Chem Lett. 27:4789–4793. 2017. View Article : Google Scholar : PubMed/NCBI
|
42
|
Wang Z, Tan J, Lei L, Sun W, Wu Y, Ding P
and Chen L: The positive effects of secreting cytokines IL-17 and
IFN-γ on the early-stage differentiation and negative effects on
the calcification of primary osteoblasts in vitro. Int
Immunopharmacol. 57:1–10. 2018. View Article : Google Scholar : PubMed/NCBI
|
43
|
Han Y, Jin Y, Lee SH, Khadka DB, Cho WJ
and Lee KY: Berberine bioisostere Q8 compound stimulates osteoblast
differentiation and function in vitro. Pharmacol Res. 119:463–475.
2017. View Article : Google Scholar : PubMed/NCBI
|
44
|
Qiao M, Shapiro P, Kumar R and Passaniti
A: Insulin-like growth factor-1 regulates endogenous RUNX2 activity
in endothelial cells through a phosphatidylinositol
3-kinase/ERK-dependent and Akt-independent signaling pathway. J
Biol Chem. 279:42709–42718. 2004. View Article : Google Scholar : PubMed/NCBI
|
45
|
Heldin J, O'Callaghan P, Hernández Vera R,
Fuchs PF, Gerwins P and Kreuger J: FGD5 sustains vascular
endothelial growth factor A (VEGFA) signaling through inhibition of
proteasome-mediated VEGF receptor 2 degradation. Cell Signal.
40:125–132. 2017. View Article : Google Scholar : PubMed/NCBI
|
46
|
Gurkan A, Tekdal GP, Bostanci N and
Belibasakis GN: Cytokine, chemokine, and growth factor levels in
peri-implant sulcus during wound healing and osseointegration after
piezosurgical versus conventional implant site preparation:
Randomized, controlled, split-mouth trial. J Periodontol.
90:616–626. 2019.PubMed/NCBI
|
47
|
Lin S, Zhang Q, Shao X, Zhang T, Xue C,
Shi S, Zhao D and Lin Y: IGF-1 promotes angiogenesis in endothelial
cells/adipose-derived stem cells coculture system with activation
of PI3K/Akt signal pathway. Cell Prolif. 50:2017. View Article : Google Scholar :
|
48
|
Wan Y, Zhuo N, Li Y, Zhao W and Jiang D:
Autophagy promotes osteogenic differentiation of human bone marrow
mesenchymal stem cell derived from osteoporotic vertebrae. Biochem
Biophys Res Commun. 488:46–52. 2017. View Article : Google Scholar : PubMed/NCBI
|
49
|
Pantovic A, Krstic A, Janjetovic K, Kocic
J, Harhaji-Trajkovic L, Bugarski D and Trajkovic V: Coordinated
time-dependent modulation of AMPK/Akt/mTOR signaling and autophagy
controls osteogenic differentiation of human mesenchymal stem
cells. Bone. 52:524–531. 2013. View Article : Google Scholar : PubMed/NCBI
|