1
|
Phillips BT, Gassei K and Orwig KE:
Spermatogonial stem cell regulation and spermatogenesis. Philos
Trans R Soc Lond B Biol Sci. 365:1663–1678. 2010. View Article : Google Scholar : PubMed/NCBI
|
2
|
Hofmann MC: Gdnf signaling pathways within
the mammalian spermatogonial stem cell niche. Mol Cell Endocrinol.
288:95–103. 2008. View Article : Google Scholar : PubMed/NCBI
|
3
|
Meng X, Lindahl M, Hyvonen ME, Parvinen M,
de Rooij DG, Hess MW, Raatikainen-Ahokas A, Sainio K, Rauvala H,
Lakso M, et al: Regulation of cell fate decision of
undifferentiated spermatogonia by GDNF. Science. 287:1489–1493.
2000. View Article : Google Scholar : PubMed/NCBI
|
4
|
Meng X, de Rooij DG, Westerdahl K, Saarma
M and Sariola H: Promotion of seminomatous tumors by targeted
overexpression of glial cell line-derived neurotrophic factor in
mouse testis. Cancer Res. 61:3267–3271. 2001.PubMed/NCBI
|
5
|
Hofmann MC, Braydich-Stolle L, Dettin L,
Johnson E and Dym M: Immortalization of mouse germ line stem cells.
Stem Cells. 23:200–210. 2005. View Article : Google Scholar : PubMed/NCBI
|
6
|
Kubota H, Avarbock MR and Brinster RL:
Culture conditions and single growth factors affect fate
determination of mouse spermatogonial stem cells. Biol Reprod.
71:722–731. 2004. View Article : Google Scholar : PubMed/NCBI
|
7
|
Horgan RP and Kenny LC:
‘Omic'technologies: Genomics, transcriptomics, proteomics and
metabolomics. Obstetrician Gynaecol. 13:189–195. 2011. View Article : Google Scholar
|
8
|
Ito K and Suda T: Metabolic requirements
for the maintenance of self-renewing stem cells. Nat Rev Mol Cell
Biol. 15:243–256. 2014. View
Article : Google Scholar : PubMed/NCBI
|
9
|
Panopoulos AD, Yanes O, Ruiz S, Kida YS,
Diep D, Tautenhahn R, Herrerias A, Batchelder EM, Plongthongkum N,
Lutz M, et al: The metabolome of induced pluripotent stem cells
reveals metabolic changes occurring in somatic cell reprogramming.
Cell Res. 22:168–177. 2012. View Article : Google Scholar : PubMed/NCBI
|
10
|
Yanes O, Clark J, Wong DM, Patti GJ,
Sanchez-Ruiz A, Benton HP, Trauger SA, Desponts C, Ding S and
Siuzdak G: Metabolic oxidation regulates embryonic stem cell
differentiation. Nat Chem Biol. 6:411–417. 2010. View Article : Google Scholar : PubMed/NCBI
|
11
|
Xu B, Chen M, Ji X, Mao Z, Zhang X, Wang X
and Xia Y: Metabolomic profiles delineate the potential role of
glycine in gold nanorod-induced disruption of mitochondria and
blood-testis barrier factors in TM-4 cells. Nanoscale. 6:8265–8273.
2014. View Article : Google Scholar : PubMed/NCBI
|
12
|
Shen H, Xu W, Zhang J, Chen M, Martin FL,
Xia Y, Liu L, Dong S and Zhu YG: Urinary metabolic biomarkers link
oxidative stress indicators associated with general arsenic
exposure to male infertility in a han chinese population. Environ
Sci Technol. 47:8843–8851. 2013.PubMed/NCBI
|
13
|
Kubota H and Brinster RL: Culture of
rodent spermatogonial stem cells, male germline stem cells of the
postnatal animal. Methods Cell Biol. 86:59–84. 2008. View Article : Google Scholar : PubMed/NCBI
|
14
|
Wei X, Jia Y, Xue Y, Geng L, Wang M, Li L,
Wang M, Zhang X and Wu X: GDNF-expressing STO feeder layer supports
the long-term propagation of undifferentiated mouse spermatogonia
with stem cell properties. Sci Rep. 6:367792016. View Article : Google Scholar : PubMed/NCBI
|
15
|
Xu B, Chen M, Ji X, Yao M, Mao Z, Zhou K,
Xia Y, Han X and Tang W: Metabolomic profiles reveal key metabolic
changes in heat stress-treated mouse Sertoli cells. Toxicol In
Vitro. 29:1745–1752. 2015. View Article : Google Scholar : PubMed/NCBI
|
16
|
Yuan B, Wu W, Chen M, Gu H, Tang Q, Guo D,
Chen T, Chen Y, Lu C, Song L, et al: From the Cover: Metabolomics
reveals a role of betaine in prenatal DBP exposure-induced
epigenetic transgenerational failure of spermatogenesis in Rats.
Toxicol Sci. 158:356–366. 2017. View Article : Google Scholar : PubMed/NCBI
|
17
|
Gika HG, Macpherson E, Theodoridis GA and
Wilson ID: Evaluation of the repeatability of ultra-performance
liquid chromatography-TOF-MS for global metabolic profiling of
human urine samples. J Chromatogr B Analyt Technol Biomed Life Sci.
871:299–305. 2008. View Article : Google Scholar : PubMed/NCBI
|
18
|
L Eriksson, T Byrne, E Johansson, J Trygg
and C Vikström: Multi-and megavariate data analysis basic
principles and applications.
|
19
|
Cai Z, Zhao JS, Li JJ, Peng DN, Wang XY,
Chen TL, Qiu YP, Chen PP, Li WJ, Xu LY, et al: A combined
proteomics and metabolomics profiling of gastric cardia cancer
reveals characteristic dysregulations in glucose metabolism. Mol
Cell Proteomics. 9:2617–2628. 2010. View Article : Google Scholar : PubMed/NCBI
|
20
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Kubota H, Avarbock MR and Brinster RL:
Growth factors essential for self-renewal and expansion of mouse
spermatogonial stem cells. Proc Natl Acad Sci USA. 101:16489–16494.
2004. View Article : Google Scholar : PubMed/NCBI
|
22
|
Mei XX, Wang J and Wu J: Extrinsic and
intrinsic factors controlling spermatogonial stem cell self-renewal
and differentiation. Asian J Androl. 17:347–54. 2015.PubMed/NCBI
|
23
|
Meng X, Lindahl M, Hyvönen ME, Parvinen M,
de Rooij DG, Hess MW, Raatikainen-Ahokas A, Sainio K, Rauvala H,
Lakso M, et al: Regulation of cell fate decision of
undifferentiated spermatogonia by GDNF. Science. 287:1489–93. 2000.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Cao M, Zhao L, Chen H, Xue W and Lin D:
NMR-based metabolomic analysis of human bladder cancer. Anal Sci.
28:451–456. 2012. View Article : Google Scholar : PubMed/NCBI
|
25
|
Jain M, Nilsson R, Sharma S, Madhusudhan
N, Kitami T, Souza AL, Kafri R, Kirschner MW, Clish CB and Mootha
VK: Metabolite profiling identifies a key role for glycine in rapid
cancer cell proliferation. Science. 336:1040–1044. 2012. View Article : Google Scholar : PubMed/NCBI
|
26
|
Ding J, Li T, Wang X, Zhao E, Choi JH,
Yang L, Zha Y, Dong Z, Huang S, Asara JM, et al: The histone H3
methyltransferase G9A epigenetically activates the serine-glycine
synthesis pathway to sustain cancer cell survival and
proliferation. Cell Metab. 18:896–907. 2013. View Article : Google Scholar : PubMed/NCBI
|
27
|
Tedeschi PM, Markert EK, Gounder M, Lin H,
Dvorzhinski D, Dolfi SC, Chan LL, Qiu J, DiPaola RS, Hirshfield KM,
et al: Contribution of serine, folate and glycine metabolism to the
ATP, NADPH and purine requirements of cancer cells. Cell Death Dis.
4:e8772013. View Article : Google Scholar : PubMed/NCBI
|
28
|
Tsuboi KK, Penefsky ZJ and Hudson PB:
Enzymes of the human erythrocyte. III. Tripeptidase, purification
and specific properties. Arch Biochem Biophys. 68:54–68. 1957.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Gödde C, Liebergesell M and Steinbüchel A:
Isolation of poly(beta-L-malic acid)-degrading bacteria and
purification and characterization of the PMA hydrolase from
Comamonas acidovorans strain 7789. FEMS Microbiol Lett.
173:365–372. 1999. View Article : Google Scholar : PubMed/NCBI
|
30
|
Schneider S, Sandalova T, Schneider G,
Sprenger GA and Samland AK: Replacement of a phenylalanine by a
tyrosine in the active site confers fructose-6-phosphate aldolase
activity to the transaldolase of Escherichia coli and human origin.
J Biol Chem. 283:30064–72. 2008. View Article : Google Scholar : PubMed/NCBI
|
31
|
Happe HK, Bylund DB and Murrin LC:
Agonist-stimulated [35S]GTPgammaS autoradiography: Optimization for
high sensitivity. Eur J Pharmacol. 422:1–13. 2001. View Article : Google Scholar : PubMed/NCBI
|
32
|
Kava R, Meister K and Kroger M:
Low-calorie sweeteners and other sugar substitutes: A review of the
safety issues. Comprehensive Rev Food Sci Food Safety. 5:35–47.
2006. View Article : Google Scholar
|
33
|
Graier WF, Grubenthal I, Dittrich P,
Wascher TC and Kostner GM: Intracellular mechanism of high
D-glucose-induced modulation of vascular cell proliferation. Eur J
Pharmacol. 294:221–229. 1995. View Article : Google Scholar : PubMed/NCBI
|
34
|
Turner JL and Bierman EL: Effects of
glucose and sorbitol on proliferation of cultured human skin
fibroblasts and arterial smooth-muscle cells. Diabetes. 27:583–588.
1978. View Article : Google Scholar : PubMed/NCBI
|
35
|
He Z, Jiang J, Kokkinaki M, Golestaneh N,
Hofmann MC and Dym M: Gdnf upregulates c-Fos transcription via the
Ras/Erk1/2 pathway to promote mouse spermatogonial stem cell
proliferation. Stem Cells. 26:266–278. 2008. View Article : Google Scholar : PubMed/NCBI
|
36
|
Ishii K, Kanatsu-Shinohara M, Toyokuni S
and Shinohara T: FGF2 mediates mouse spermatogonial stem cell
self-renewal via upregulation of Etv5 and Bcl6b through MAP2K1
activation. Development. 139:1734–1743. 2012. View Article : Google Scholar : PubMed/NCBI
|
37
|
Wu X, Oatley JM, Oatley MJ, Kaucher AV,
Avarbock MR and Brinster RL: The POU domain transcription factor
POU3F1 is an important intrinsic regulator of GDNF-induced survival
and self-renewal of mouse spermatogonial stem cells. Biol Reprod.
82:1103–1111. 2010. View Article : Google Scholar : PubMed/NCBI
|
38
|
Wu X, Goodyear SM, Tobias JW, Avarbock MR
and Brinster RL: Spermatogonial stem cell self-renewal requires
ETV5-mediated downstream activation of Brachyury in mice. Biol
Reprod. 85:1114–1123. 2011. View Article : Google Scholar : PubMed/NCBI
|
39
|
Puglisi MA, Tesori V, Lattanzi W,
Gasbarrini GB and Gasbarrini A: Colon cancer stem cells:
Controversies and perspectives. World J Gastroenterol.
19:2997–3006. 2013. View Article : Google Scholar : PubMed/NCBI
|
40
|
Chen T, Heller E, Beronja S, Oshimori N,
Stokes N and Fuchs E: An RNA interference screen uncovers a new
molecule in stem cell self-renewal and long-term regeneration.
Nature. 485:104–108. 2012. View Article : Google Scholar : PubMed/NCBI
|