1
|
Wallimann T, Dolder M, Schlattner U, Eder
M, Hornemann T, Kraft T and Stolz M: Creatine kinase: An enzyme
with a central role in cellular energy metabolism. MAGMA.
6:116–119. 1998. View Article : Google Scholar : PubMed/NCBI
|
2
|
Zhao C, Shang L, Wang W and Jacobs DO:
Myocellular creatine and creatine transporter serine
phosphorylation after starvation. J Surg Res. 105:10–16. 2002.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Sun L, Si M, Liu X, Choi JM, Wang Y,
Thomas SS, Peng H and Hu Z: Long-noncoding RNA Atrolnc-1 promotes
muscle wasting in mice with chronic kidney disease. J Cachexia
Sarcopenia Muscle. 9:962–974. 2018. View Article : Google Scholar : PubMed/NCBI
|
4
|
Zhang ZK, Li J, Guan D, Liang C, Zhuo Z,
Liu J, Lu A, Zhang G and Zhang BT: Long noncoding RNA lncMUMA
reverses established skeletal muscle atrophy following mechanical
unloading. Mol Ther. 26:2669–2680. 2018. View Article : Google Scholar : PubMed/NCBI
|
5
|
Chen R, Jiang T, She Y, Xu J, Li C, Zhou
S, Shen H, Shi H and Liu S: Effects of cobalt chloride, a
hypoxia-mimetic agent, on autophagy and atrophy in skeletal C2C12
myotubes. Biomed Res Int. 2017:70975802017.PubMed/NCBI
|
6
|
Chen R, She Y, Fu Q, Chen X, Shi H, Lei S,
Zhou S, Ou J and Liu Y: Differentially expressed coding and
noncoding RNAs in CoCl2-induced cytotoxicity of C2C12 cells.
Epigenomics. 11:423–438. 2019. View Article : Google Scholar : PubMed/NCBI
|
7
|
Mak RH, Ikizler AT, Kovesdy CP, Raj DS,
Stenvinkel P and Kalantar-Zadeh K: Wasting in chronic kidney
disease. J Cachexia Sarcopenia Muscle. 2:9–25. 2011. View Article : Google Scholar : PubMed/NCBI
|
8
|
Zwart SR, Davis-Street JE, Paddon-Jones D,
Ferrando AA, Wolfe RR and Smith SM: Amino acid supplementation
alters bone metabolism during simulated weightlessness. J Appl
Physiol (1985). 99:134–140. 2005. View Article : Google Scholar : PubMed/NCBI
|
9
|
Alzghoul Mb, Gerrard D, Watkins BA and
Hannon K: Ectopic expression of IGF-I and shh by skeletal muscle
inhibits disuse-mediated skeletal muscle atrophy and bone
osteopenia in vivo. FASEB J. 18:221–223. 2004. View Article : Google Scholar : PubMed/NCBI
|
10
|
Gregory CM, Vandenborne K, Huang HF,
Ottenweller JE and Dudley GA: Effects of testosterone replacement
therapy on skeletal muscle after spinal cord injury. Spinal Cord.
41:23–28. 2003. View Article : Google Scholar : PubMed/NCBI
|
11
|
Finkle WD, Greenland S, Ridgeway GK, Adams
JL, Frasco MA, Cook MB, Fraumeni JF Jr and Hoover RN: Increased
risk of non-fatal myocardial infarction following testosterone
therapy prescription in men. PLoS One. 9:e858052014. View Article : Google Scholar : PubMed/NCBI
|
12
|
Milan G, Romanello V, Pescatore F, Armani
A, Paik JH, Frasson L, Seydel A, Zhao J, Abraham R, Goldberg AL, et
al: Regulation of autophagy and the ubiquitin-proteasome system by
the FoxO transcriptional network during muscle atrophy. Nat Commun.
6:66702015. View Article : Google Scholar : PubMed/NCBI
|
13
|
Cid-Díaz T, Santos-Zas I, González-Sánchez
J, Gurriarán-Rodríguez U, Mosteiro CS, Casabiell X,
García-Caballero T, Mouly V, Pazos Y and Camiña JP: Obestatin
controls the ubiquitin-proteasome and autophagy-lysosome systems in
glucocorticoid-induced muscle cell atrophy. J Cachexia Sarcopenia
Muscle. 8:974–990. 2017. View Article : Google Scholar : PubMed/NCBI
|
14
|
Miller BF, Baehr LM, Musci RV, Reid JJ,
Peelor FF III, Hamilton KL and Bodine SC: Muscle-specific changes
in protein synthesis with aging and reloading after disuse atrophy.
J Cachexia Sarcopenia Muscle. Jul 16–2019.(Epub ahead of print).
doi: 10.1002/jcsm.12470. View Article : Google Scholar : PubMed/NCBI
|
15
|
Tanaka M, Sugimoto K, Fujimoto T, Xie K,
Takahashi T, Akasaka H, Kurinami H, Yasunobe Y, Matsumoto T, Fujino
H and Rakugi H: Preventive effects of low-intensity exercise on
cancer cachexia-induced muscle atrophy. FASEB J. 33:7852–7862.
2019. View Article : Google Scholar : PubMed/NCBI
|
16
|
Boltaña S, Valenzuela-Miranda D, Aguilar
A, Mackenzie S and Gallardo-Escárate C: Long noncoding RNAs
(lncRNAs) dynamics evidence immunomodulation during ISAV–Infected
Atlantic salmon (Salmo salar). Sci Rep. 6:226982016. View Article : Google Scholar : PubMed/NCBI
|
17
|
Chen R, Jiang T, She Y, Xie S, Zhou S, Li
C, Ou J and Liu Y: Comprehensive analysis of lncRNAs and mRNAs with
associated co-expression and ceRNA networks in C2C12 myoblasts and
myotubes. Gene. 647:164–173. 2018. View Article : Google Scholar : PubMed/NCBI
|
18
|
Cesana M, Cacchiarelli D, Legnini I,
Santini T, Sthandier O, Chinappi M, Tramontano A and Bozzoni I: A
long noncoding RNA controls muscle differentiation by functioning
as a competing endogenous RNA. Cell. 147:358–369. 2011. View Article : Google Scholar : PubMed/NCBI
|
19
|
Gong C, Li Z, Ramanujan K, Clay I, Zhang
Y, Lemire-Brachat S and Glass DJ: A long non-coding RNA, LncMyoD,
regulates skeletal muscle differentiation by blocking IMP2-mediated
mRNA translation. Dev Cell. 34:181–191. 2015. View Article : Google Scholar : PubMed/NCBI
|
20
|
Legnini I, Morlando M, Mangiavacchi A,
Fatica A and Bozzoni I: A feedforward regulatory loop between HuR
and the long noncoding RNA linc-MD1 controls early phases of
myogenesis. Mol Cell. 6:506–514. 2014. View Article : Google Scholar
|
21
|
Militello G, Hosen MR, Ponomareva Y,
Gellert P, Weirick T, John D, Hindi SM, Mamchaoui K, Mouly V,
Döring C, et al: A novel long non-coding RNA myolinc regulates
myogenesis through TDP-43 and Filip1. J Mol Cell Biol. 10:102–117.
2018. View Article : Google Scholar : PubMed/NCBI
|
22
|
Wang L, Zhao Y, Bao X, Zhu X, Kwok YK, Sun
K, Chen X, Huang Y, Jauch R and Esteban MA: LncRNA Dum interacts
with Dnmts to regulate Dppa2 expression during myogenic
differentiation and muscle regeneration. Cell Res. 25:335–350.
2015. View Article : Google Scholar : PubMed/NCBI
|
23
|
Zhang Z, Li J, Guan D, Liang C, Zhuo Z,
Liu J, Lu A, Zhang G and Zhang BT: A newly identified lncRNA MAR1
acts as a miR-487b sponge to promote skeletal muscle
differentiation and regeneration. J Cachexia Sarcopenia Muscle.
9:613–626. 2018. View Article : Google Scholar : PubMed/NCBI
|
24
|
Zhu M, Liu J, Xiao J, Yang L, Cai M, Shen
H, Chen X, Ma Y, Hu S, Wang Z, et al: Lnc-mg is a long non-coding
RNA that promotes myogenesis. Nat Commun. 8:147182017. View Article : Google Scholar : PubMed/NCBI
|
25
|
Xiong W, Jiang Y, Ai Y, Liu S, Wu XR, Cui
JG, Qin JY, Liu Y, Xia YX and Ju YH: Microarray analysis of long
non-coding RNA expression profile associated with
5-fluorouracil-based chemoradiation resistance in colorectal cancer
cells. Asian Pac J Cancer Prev. 16:3395–3402. 2015. View Article : Google Scholar : PubMed/NCBI
|
26
|
Du J, Zhang P, Zhao X, He J, Xu Y, Zou Q,
Luo J, Shen L, Gu H, Tang Q, et al: MicroRNA-351-5p mediates
skeletal myogenesis by directly targeting lactamase-β and is
regulated by lnc-mg. FASEB J. 33:1911–1926. 2019. View Article : Google Scholar : PubMed/NCBI
|
27
|
Neguembor MV, Jothi M and Gabellini D:
Long noncoding RNAs, emerging players in muscle differentiation and
disease. Skelet Muscle. 4:82014. View Article : Google Scholar : PubMed/NCBI
|
28
|
Simionescu-Bankston A and Kumar A:
Noncoding RNAs in the regulation of skeletal muscle biology in
health and disease. J Mol Med (Berl). 94:853–866. 2016. View Article : Google Scholar : PubMed/NCBI
|
29
|
Bartel DP: MicroRNAs: Genomics,
biogenesis, mechanism, and function. Cell. 116:281–297. 2004.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Ivey KN and Srivastava D: MicroRNAs as
developmental regulators. Cold Spring Harb Perspect biol.
7:a0081442015. View Article : Google Scholar : PubMed/NCBI
|
31
|
Lei Z, Sluijter JP and van Mil A: MicroRNA
therapeutics for cardiac regeneration. Mini Rev Med Chem.
15:441–451. 2015. View Article : Google Scholar : PubMed/NCBI
|
32
|
Li J, Chan MC, Yu Y, Bei Y, Chen P, Zhou
Q, Cheng L, Chen L, Ziegler O, Rowe GC, et al: miR-29b contributes
to multiple types of muscle atrophy. Nat Commun. 8:152012017.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Horak M, Novak J and Bienertova-Vasku J:
Muscle-specific microRNAs in skeletal muscle development. Dev Biol.
410:1–13. 2016. View Article : Google Scholar : PubMed/NCBI
|
34
|
Lagos-Quintana M, Rauhut R, Yalcin A,
Meyer J, Lendeckel W and Tuschl T: Identification of
tissue-specific microRNAs from mouse. Curr Biol. 12:735–739. 2002.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Walden TB, Timmons JA, Keller P,
Nedergaard J and Cannon B: Distinct expression of muscle-specific
MicroRNAs (myomirs) in brown adipocytes. J Cell Physiol.
218:444–449. 2009. View Article : Google Scholar : PubMed/NCBI
|
36
|
Chen J, Mandel EM, Thomson JM, Wu Q,
Callis TE, Hammond SM, Conlon FL and Wang DZ: The role of
microRNA-1 and microRNA-133 in skeletal muscle proliferation and
differentiation. Nat Genet. 38:228–233. 2006. View Article : Google Scholar : PubMed/NCBI
|
37
|
McCarthy JJ and Esser KA: MicroRNA-1 and
microRNA-133a expression are decreased during skeletal muscle
hypertrophy. J Appl Physiol (1985). 102:306–313. 2007. View Article : Google Scholar : PubMed/NCBI
|
38
|
Boutz PL, Chawla G, Stoilov P and Black
DL: MicroRNAs regulate the expression of the alternative splicing
factor nPTB during muscle development. Gene Dev. 21:71–84. 2007.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Anderson C, Catoe H and Werner R: MIR-206
regulates connexin43 expression during skeletal muscle development.
Nucleic Acids Res. 34:5863–5871. 2006. View Article : Google Scholar : PubMed/NCBI
|
40
|
Kim HK, Lee YS, Sivaprasad U, Malhotra A
and Dutta A: Muscle-specific microRNA miR-206 promotes muscle
differentiation. J Cell Biol. 174:677–687. 2006. View Article : Google Scholar : PubMed/NCBI
|
41
|
Antoniou A, Mastroyiannopoulos NP, Uney JB
and Phylactou LA: MiR-186 inhibits muscle cell differentiation
through myogenin regulation. J Biol Chem. 289:3923–3935. 2014.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Guan L, Hu X, Liu L, Xing Y, Zhou Z, Liang
X, Yang Q, Jin S, Bao J, Gao H, et al: bta-miR-23a involves in
adipogenesis of progenitor cells derived from fetal bovine skeletal
muscle. Sci Rep. 7:437162017. View Article : Google Scholar : PubMed/NCBI
|
43
|
Mercatelli N, Fittipaldi S, De Paola E,
Dimauro I, Paronetto MP, Jackson MJ and Caporossi D: MiR-23-TrxR1
as a novel molecular axis in skeletal muscle differentiation. Sci
Rep. 7:72192017. View Article : Google Scholar : PubMed/NCBI
|
44
|
Hou L, Xu J, Jiao Y, Li H, Pan Z, Duan J,
Gu T, Hu C and Wang C: MiR-27b promotes muscle development by
inhibiting MDFI expression. Cell Physiol Biochem. 46:2271–2283.
2018. View Article : Google Scholar : PubMed/NCBI
|
45
|
Liu C, Wang M, Chen M, Zhang K, Gu L, Li
Q, Yu Z, Li N and Meng Q: MiR-18a induces myotubes atrophy by
down-regulating IgfI. Int J Biochem Cell Biol. 90:145–154. 2017.
View Article : Google Scholar : PubMed/NCBI
|
46
|
Liu C, Chen M, Wang M, Pi W, Li N and Meng
Q: MiR-18a regulates myoblasts proliferation by targeting Fgf1.
PLoS One. 13:e2015512018.
|
47
|
Chen J, Tao Y, Li J, Deng Z, Yan Z, Xiao X
and Wang DZ: MicroRNA-1 and microRNA-206 regulate skeletal muscle
satellite cell proliferation and differentiation by repressing
Pax7. J Cell Biol. 190:867–879. 2010. View Article : Google Scholar : PubMed/NCBI
|
48
|
Kallen AN, Zhou XB, Xu J, Qiao C, Ma J,
Yan L, Lu L, Liu C, Yi JS and Zhang H: The imprinted H19 lncRNA
antagonizes let-7 microRNAs. Mol Cell. 52:101–112. 2013. View Article : Google Scholar : PubMed/NCBI
|
49
|
Wang G, Wang Y, Xiong Y, Chen XC, Ma ML,
Cai R, Gao Y, Sun YM, Yang GS and Pang WJ: Sirt1 AS lncRNA
interacts with its mRNA to inhibit muscle formation by attenuating
function of miR-34a. Sci Rep. 6:218652016. View Article : Google Scholar : PubMed/NCBI
|
50
|
Chen R, Jiang T, Lei S, She Y, Shi H, Zhou
S, Ou J and Liu Y: Expression of circular RNAs during C2C12
myoblast differentiation and prediction of coding potential based
on the number of open reading frames and N6-methyladenosine motifs.
Cell Cycle. 17:1832–1845. 2018. View Article : Google Scholar : PubMed/NCBI
|
51
|
Li F, Li X, Peng X, Sun L, Jia S, Wang P,
Ma S, Zha H, Yu Q and Huo H: Ginsenoside Rg1 prevents
starvation-induced muscle protein degradation via regulation of
AKT/mTOR/FoxO signaling in C2C12 myotubes. Exp Ther Med.
14:1241–1247. 2017. View Article : Google Scholar : PubMed/NCBI
|
52
|
The Ministry of Science and Technology of
the People's Republic of China, . Guidance suggestions for the care
and use of laboratory animals. Sep 30–2006.
|
53
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
54
|
Kim W, Kim J, Park H and Jeon J:
Development of microfluidic stretch system for studying recovery of
damaged skeletal muscle cells. Micromachines (Basel). 9:E6712018.
View Article : Google Scholar : PubMed/NCBI
|
55
|
von Roretz C, Beauchamp P, Di Marco S and
Gallouzi I: HuR and myogenesis: Being in the right place at the
right time. Biochim Biophys Acta. 1813:1663–1667. 2011. View Article : Google Scholar : PubMed/NCBI
|
56
|
Chen CM, Kraut N, Groudine M and Weintraub
H: I-mf, a novel myogenic repressor, interacts with members of the
MyoD family. Cell. 86:731–741. 1996. View Article : Google Scholar : PubMed/NCBI
|