Whole‑exome sequencing in Russian children with non‑type 1 diabetes mellitus reveals a wide spectrum of genetic variants in MODY‑related and unrelated genes
- Authors:
- Oleg S. Glotov
- Elena A. Serebryakova
- Mariia E. Turkunova
- Olga A. Efimova
- Andrey S. Glotov
- Yury A. Barbitoff
- Yulia A. Nasykhova
- Alexander V. Predeus
- Dmitrii E. Polev
- Mikhail A. Fedyakov
- Irina V. Polyakova
- Tatyana E. Ivashchenko
- Natalia Y. Shved
- Elena S. Shabanova
- Alena V. Tiselko
- Olga V. Romanova
- Andrey M. Sarana
- Anna A. Pendina
- Sergey G. Scherbak
- Ekaterina V. Musina
- Anastasiia V. Petrovskaia‑Kaminskaia
- Liubov R. Lonishin
- Liliya V. Ditkovskaya
- Liudmila А. Zhelenina
- Ludmila V. Tyrtova
- Olga S. Berseneva
- Rostislav K. Skitchenko
- Evgenii N. Suspitsin
- Elena B. Bashnina
- Vladislav S. Baranov
-
Affiliations: D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 St. Petersburg, Russia, St. Petersburg State Pediatric Medical University, 194100 St. Petersburg, Russia, St. Petersburg State University, 199034 St. Petersburg, Russia, City Hospital Number 40, Sestroretsk, 197706 St. Petersburg, Russia, Bioinformatics Institute, 197342 St. Petersburg, Russia, North‑Western State Medical University Named After I.I. Mechnikov, 191015 St. Petersburg, Russia - Published online on: October 16, 2019 https://doi.org/10.3892/mmr.2019.10751
- Pages: 4905-4914
-
Copyright: © Glotov et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Hattersley AT, Greeley SAW, Polak M, Rubio-Cabezas O, Njølstad PR, Mlynarski W, Castano L, Carlsson A, Raile K, Chi DV, et al: ISPAD clinical practice consensus guidelines 2018: The diagnosis and management of monogenic diabetes in children and adolescents. Pediatr Diabetes. 19 (Suppl 27):S47–S63. 2018. View Article : Google Scholar | |
Barbetti F and D'Annunzio G: Genetic causes and treatment of neonatal diabetes and early childhood diabetes. Best Pract Res Clin Endocrinol Metab. 32:575–591. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lemelman MB, Letourneau L and Greeley SAW: Neonatal diabetes mellitus: An update on diagnosis and management. Clin Perinatol. 45:41–59. 2018. View Article : Google Scholar : PubMed/NCBI | |
Greeley SA, Naylor RN, Philipson LH and Bell GI: Neonatal diabetes: An expanding list of genes allows for improved diagnosis and treatment. Curr Diab Rep. 11:519–532. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kleinberger JW and Pollin TI: Undiagnosed MODY: Time for Action. Curr Diab Rep. 15:1102015. View Article : Google Scholar : PubMed/NCBI | |
American Diabetes Association: 2. Classification and diagnosis of diabetes: Standards of medical care in diabetes-2018. Diabetes Care. 41 (Suppl 1):S13–S27. 2018. View Article : Google Scholar : PubMed/NCBI | |
DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, Philippakis AA, del Angel G, Rivas MA, Hanna M, et al: A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet. 43:491–498. 2011. View Article : Google Scholar : PubMed/NCBI | |
Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, Del Angel G, Levy-Moonshine A, Jordan T, Shakir K, Roazen D, Thibault J, et al: From FastQ data to high-confidence variant calls: The genome analysis toolkit best practices pipeline. Curr Protoc Bioinform. 43:11.10.1–33. 2013. | |
1000 Genomes Project Consortium, ; Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, Korbel JO, Marchini JL, McCarthy S, McVean GA and Abecasis GR: A global reference for human genetic variation. Nature. 526:68–74. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, O'Donnell-Luria AH, Ware JS, Hill AJ, Cummings BB, et al: Analysis of protein-coding genetic variation in 60,706 humans. Nature. 536:285–291. 2016. View Article : Google Scholar : PubMed/NCBI | |
Fu W, O'Connor TD, Jun G, Kang HM, Abecasis G, Leal SM, Gabriel S, Rieder MJ, Altshuler D, Shendure J, et al: Analysis of 6,515 exomes reveals the recent origin of most human protein-coding variants. Nature. 493:216–220. 2013. View Article : Google Scholar : PubMed/NCBI | |
Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS and Sunyaev SR: A method and server for predicting damaging missense mutations. Nat Methods. 7:248–249. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ng PC and Henikoff S: Predicting deleterious amino acid substitutions. Genome Res. 11:863–874. 2001. View Article : Google Scholar : PubMed/NCBI | |
Choi Y and Chan AP: PROVEAN web server: A tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics. 31:2745–2747. 2015. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Jian X and Boerwinkle E: dbNSFP v2.0: A database of human non-synonymous SNVs and their functional predictions and annotations. Hum Mutat. 34:E2393–E2402. 2013. View Article : Google Scholar : PubMed/NCBI | |
Desmet FO, Hamroun D, Lalande M, Collod-Béroud G, Claustres M and Béroud C: Human splicing finder: An online bioinformatics tool to predict splicing signals. Nucleic Acids Res. 37:e672009. View Article : Google Scholar : PubMed/NCBI | |
Zhao H, Yang Y, Lin H, Zhang X, Mort M, Cooper DN, Liu Y and Zhou Y: DDIG-in: Discriminating between disease-associated and neutral non-frameshifting micro-indels. Genome Biol. 14:R232013. View Article : Google Scholar : PubMed/NCBI | |
Capriotti E, Fariselli P and Casadio R: I-Mutant2.0: Predicting stability changes upon mutation from the protein sequence or structure. Nucleic Acids Res. 33:W306–W310. 2005. View Article : Google Scholar : PubMed/NCBI | |
Barbitoff YA, Bezdvornykh IV, Polev DE, Serebryakova EA, Glotov AS, Glotov OS and Predeus AV: Catching hidden variation: Systematic correction of reference minor allele annotation in clinical variant calling. Genet Med. 20:360–364. 2018. View Article : Google Scholar : PubMed/NCBI | |
Gasperíková D, Tribble ND, Staník J, Hucková M, Misovicová N, van de Bunt M, Valentínová L, Barrow BA, Barák L, Dobránsky R, et al: Identification of a novel beta-cell glucokinase (GCK) promoter mutation (−71G>C) that modulates GCK gene expression through loss of allele-specific Sp1 binding causing mild fasting hyperglycemia in humans. Diabetes. 58:1929–1935. 2009. View Article : Google Scholar : PubMed/NCBI | |
Mantovani V, Salardi S, Cerreta V, Bastia D, Cenci M, Ragni L, Zucchini S, Parente R and Cicognani A: Identification of eight novel glucokinase mutations in Italian children with maturity-onset diabetes of the young. Hum Mutat. 22:3382003. View Article : Google Scholar : PubMed/NCBI | |
Bacon S, Kyithar MP, Schmid J, Rizvi SR, Bonner C, Graf R, Prehn JH and Byrne MM: Serum levels of pancreatic stone protein (PSP)/reg1A as an indicator of beta-cell apoptosis suggest an increased apoptosis rate in hepatocyte nuclear factor 1 alpha (HNF1A-MODY) carriers from the third decade of life onward. BMC Endocr Disord. 12:132012. View Article : Google Scholar : PubMed/NCBI | |
Gragnoli C, Cockburn BN, Chiaramonte F, Gorini A, Marietti G, Marozzi G and Signorini AM: Early-onset Type II diabetes mellitus in Italian families due to mutations in the genes encoding hepatic nuclear factor 1 alpha and glucokinase. Diabetologia. 44:1326–1329. 2001. View Article : Google Scholar : PubMed/NCBI | |
Ziemssen F, Bellanné-Chantelot C, Osterhoff M, Schatz H and Pfeiffer AF: To: Lindner T, cockburn BN, Bell GI (1999) Molecular genetics of MODY in Germany. Diabetologia. 42:121–123, Diabetologia 45: 286–288. 2002. | |
Estalella I, Rica I, Perez de Nanclares G, Bilbao JR, Vazquez JA, San Pedro JI, Busturia MA and Castaño L; Spanish MODY Group, : Mutations in GCK and HNF-1alpha explain the majority of cases with clinical diagnosis of MODY in Spain. Clin Endocrinol (Oxf). 67:538–546. 2007.PubMed/NCBI | |
Stoffel M, Froguel P, Takeda J, Zouali H, Vionnet N, Nishi S, Weber IT, Harrison RW, Pilkis SJ, Lesage S, et al: Human glucokinase gene: Isolation, characterization, and identification of two missense mutations linked to early-onset non-insulin-dependent (type 2) diabetes mellitus. Proc Natl Acad Sci USA. 89:7698–7702. 1992. View Article : Google Scholar : PubMed/NCBI | |
Hattersley AT, Beards F, Ballantyne E, Appleton M, Harvey R and Ellard S: Mutations in the glucokinase gene of the fetus result in reduced birth weight. Nat Genet. 19:268–270. 1998. View Article : Google Scholar : PubMed/NCBI | |
Froguel P, Zouali H, Vionnet N, Velho G, Vaxillaire M, Sun F, Lesage S, Stoffel M, Takeda J, Passa P, et al: Familial hyperglycemia due to mutations in glucokinase. Definition of a subtype of diabetes mellitus. N Engl J Med. 328:697–702. 1993. View Article : Google Scholar : PubMed/NCBI | |
Borowiec M, Fendler W, Antosik K, Baranowska A, Gnys P, Zmyslowska A, Malecki M and Mlynarski W: Doubling the referral rate of monogenic diabetes through a nationwide information campaign-update on glucokinase gene mutations in a Polish cohort. Clin Genet. 82:587–590. 2012. View Article : Google Scholar : PubMed/NCBI | |
Pruhova S, Ek J, Lebl J, Sumnik Z, Saudek F, Andel M, Pedersen O and Hansen T: Genetic epidemiology of MODY in the Czech republic: New mutations in the MODY genes HNF-4alpha, GCK and HNF-1alpha. Diabetologia. 46:291–295. 2003. View Article : Google Scholar : PubMed/NCBI | |
Gidh-Jain M, Takeda J, Xu LZ, Lange AJ, Vionnet N, Stoffel M, Froguel P, Velho G, Sun F, Cohen D, et al: Glucokinase mutations associated with non-insulin-dependent (type 2) diabetes mellitus have decreased enzymatic activity: Implications for structure/function relationships. Proc Natl Acad Sci USA. 90:1932–1936. 1993. View Article : Google Scholar : PubMed/NCBI | |
Colclough K, Bellanne-Chantelot C, Saint-Martin C, Flanagan SE and Ellard S: Mutations in the genes encoding the transcription factors hepatocyte nuclear factor 1 alpha and 4 alpha in maturity-onset diabetes of the young and hyperinsulinemic hypoglycemia. Hum Mutat. 34:669–685. 2013. View Article : Google Scholar : PubMed/NCBI | |
Plengvidhya N, Kooptiwut S, Songtawee N, Doi A, Furuta H, Nishi M, Nanjo K, Tantibhedhyangkul W, Boonyasrisawat W, Yenchitsomanus PT, et al: PAX4 mutations in Thais with maturity onset diabetes of the young. J Clin Endocrinol Metab. 92:2821–2826. 2007. View Article : Google Scholar : PubMed/NCBI | |
Flanagan SE, Patch AM, Mackay DJ, Edghill EL, Gloyn AL, Robinson D, Shield JP, Temple K, Ellard S and Hattersley AT: Mutations in ATP-sensitive K+ channel genes cause transient neonatal diabetes and permanent diabetes in childhood or adulthood. Diabetes. 56:1930–1937. 2007. View Article : Google Scholar : PubMed/NCBI | |
Mohnike K, Wieland I, Barthlen W, Vogelgesang S, Empting S, Mohnike W, Meissner T and Zenker M: Clinical and genetic evaluation of patients with KATP channel mutations from the German registry for congenital hyperinsulinism. Horm Res Paediatr. 81:156–168. 2014. View Article : Google Scholar : PubMed/NCBI | |
Suzuki S, Nakao A, Sarhat AR, Furuya A, Matsuo K, Tanahashi Y, Kajino H and Azuma H: A case of pancreatic agenesis and congenital heart defects with a novel GATA6 nonsense mutation: Evidence of haploinsufficiency due to nonsense-mediated mRNA decay. Am J Med Genet A. 164A:476–479. 2014. View Article : Google Scholar : PubMed/NCBI | |
Gomez-Zaera M, Strom T, Meitinger T and Nunes V: Wolframin mutations in Spanish families with Wolfram syndrome. Meeting abstract. Am J Hum Genet. 65:16731999. | |
Smith CJ, Crock PA, King BR, Meldrum CJ and Scott RJ: Phenotype-genotype correlations in a series of wolfram syndrome families. Diabetes Care. 27:2003–2009. 2004. View Article : Google Scholar : PubMed/NCBI | |
Chèvre JC, Hani EH, Boutin P, Vaxillaire M, Blanché H, Vionnet N, Pardini VC, Timsit J, Larger E, Charpentier G, et al: Mutation screening in 18 Caucasian families suggest the existence of other MODY genes. Diabetologia. 41:1017–1023. 1998. View Article : Google Scholar : PubMed/NCBI | |
Awata T, Inoue K, Kurihara S, Ohkubo T, Inoue I, Abe T, Takino H, Kanazawa Y and Katayama S: Missense variations of the gene responsible for Wolfram syndrome (WFS1/wolframin) in Japanese: Possible contribution of the Arg456His mutation to type 1 diabetes as a nonautoimmune genetic basis. Biochem Biophys Res Commun. 268:612–616. 2000. View Article : Google Scholar : PubMed/NCBI | |
Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, Grody WW, Hegde M, Lyon E, Spector E, et al: Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 17:405–424. 2015. View Article : Google Scholar : PubMed/NCBI | |
Shaw-Smith C, Flanagan SE, Patch AM, Grulich-Henn J, Habeb AM, Hussain K, Pomahacova R, Matyka K, Abdullah M, Hattersley AT and Ellard S: Recessive SLC19A2 mutations are a cause of neonatal diabetes mellitus in thiamine-responsive megaloblastic anaemia. Pediatr Diabetes. 13:314–321. 2012. View Article : Google Scholar : PubMed/NCBI | |
Fraser FC and Gunn T: Diabetes mellitus, diabetes insipidus, and optic atrophy. An autosomal recessive syndrome? J Med Genet. 14:190–193. 1977. View Article : Google Scholar : PubMed/NCBI | |
Bennett K, James C, Mutair A, Al-Shaikh H, Sinani A and Hussain K: Four novel cases of permanent neonatal diabetes mellitus caused by homozygous mutations in the glucokinase gene. Pediatr Diabetes. 12:P192–P196. 2011. View Article : Google Scholar | |
Raimondo A, Chakera AJ, Thomsen SK, Colclough K, Barrett A, De Franco E, Chatelas A, Demirbilek H, Akcay T, Alawneh H, et al: Phenotypic severity of homozygous GCK mutations causing neonatal or childhood-onset diabetes is primarily mediated through effects on protein stability. Hum Mol Genet. 23:6432–6440. 2014. View Article : Google Scholar : PubMed/NCBI | |
Rubio-Cabezas O, Patch AM, Minton JA, Flanagan SE, Edghill EL, Hussain K, Balafrej A, Deeb A, Buchanan CR, Jefferson IG, et al: Wolcott-Rallison syndrome is the most common genetic cause of permanent neonatal diabetes in consanguineous families. J Clin Endocrinol Metab. 94:4162–4170. 2009. View Article : Google Scholar : PubMed/NCBI | |
Labay V, Raz T, Baron D, Mandel H, Williams H, Barrett T, Szargel R, McDonald L, Shalata A, Nosaka K, et al: Mutations in SLC19A2 cause thiamine-responsive megaloblastic anaemia associated with diabetes mellitus and deafness. Nat Genet. 22:300–304. 1999. View Article : Google Scholar : PubMed/NCBI | |
Tattersall RB: Mild familial diabetes with dominant inheritance. Q J Med. 43:339–357. 1974.PubMed/NCBI | |
Tattersall RB and Fajans SS: A difference between the inheritance of classical juvenile-onset and maturity-onset type diabetes of young people. Diabetes. 24:44–53. 1975. View Article : Google Scholar : PubMed/NCBI | |
Yamagata K, Furuta H, Oda N, Kaisaki PJ, Menzel S, Cox NJ, Fajans SS, Signorini S, Stoffel M and Bell GI: Mutations in the hepatocyte nuclear factor-4alpha gene in maturity-onset diabetes of the young (MODY1). Nature. 384:458–460. 1996. View Article : Google Scholar : PubMed/NCBI | |
Yamagata K, Oda N, Kaisaki PJ, Menzel S, Furuta H, Vaxillaire M, Southam L, Cox RD, Lathrop GM, Boriraj VV, et al: Mutations in the hepatocyte nuclear factor-1alpha gene in maturity-onset diabetes of the young (MODY3). Nature. 384:455–458. 1996. View Article : Google Scholar : PubMed/NCBI | |
Horikawa Y, Iwasaki N, Hara M, Furuta H, Hinokio Y, Cockburn BN, Lindner T, Yamagata K, Ogata M, Tomonaga O, et al: Mutation in hepatocyte nuclear factor-1 beta gene (TCF2) associated with MODY. Nat Genet. 17:384–385. 1997. View Article : Google Scholar : PubMed/NCBI | |
Stoffers DA, Ferrer J, Clarke WL and Habener JF: Early-onset type-II diabetes mellitus (MODY4) linked to IPF1. Nat Genet. 17:138–139. 1997. View Article : Google Scholar : PubMed/NCBI | |
Froguel P, Vaxillaire M, Sun F, Velho G, Zouali H, Butel MO, Lesage S, Vionnet N, Clément K, Fougerousse F, et al: Close linkage of glucokinase locus on chromosome 7p to early-onset non-insulin-dependent diabetes mellitus. Nature. 356:162–164. 1992. View Article : Google Scholar : PubMed/NCBI | |
Hattersley AT, Turner RC, Permutt MA, Patel P, Tanizawa Y, Chiu KC, O'Rahilly S, Watkins PJ and Wainscoat JS: Linkage of type 2 diabetes to the glucokinase gene. Lancet. 339:1307–1310. 1992. View Article : Google Scholar : PubMed/NCBI | |
Timsit J, Saint-Martin C, Dubois-Laforgue D and Bellanné-Chantelot C: Searching for Maturity-Onset diabetes of the Young (MODY): When and What for? Can J Diabetes. 40:455–461. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ellard S, Lango Allen H, De Franco E, Flanagan SE, Hysenaj G, Colclough K, Houghton JA, Shepherd M, Hattersley AT, Weedon MN and Caswell R: Improved genetic testing for monogenic diabetes using targeted next-generation sequencing. Diabetologia. 56:1958–1963. 2013. View Article : Google Scholar : PubMed/NCBI | |
Shields BM, Hicks S, Shepherd MH, Colclough K, Hattersley AT and Ellard S: Maturity-onset diabetes of the young (MODY): How many cases are we missing? Diabetologia. 53:2504–2508. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zubkova N, Burumkulova F, Plechanova M, Petrukhin V, Petrov V, Vasilyev E, Panov A, Sorkina E, Ulyatovskaya V, Makretskaya N and Tiulpakov A: High frequency of pathogenic and rare sequence variants in diabetes-related genes among Russian patients with diabetes in pregnancy. Acta Diabetol. 56:413–420. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lorini R, Klersy C, d'Annunzio G, Massa O, Minuto N, Iafusco D, Bellannè-Chantelot C, Frongia AP, Toni S, Meschi F, et al: Maturity-onset diabetes of the young in children with incidental hyperglycemia: A multicenter Italian study of 172 families. Diabetes Care. 32:1864–1866. 2009. View Article : Google Scholar : PubMed/NCBI | |
Schober E, Rami B, Grabert M, Thon A, Kapellen T, Reinehr T and Holl RW: Phenotypical aspects of maturity-onset diabetes of the young (MODY diabetes) in comparison with Type 2 diabetes mellitus (T2DM) in children and adolescents: Experience from a large multicentre database. Diabet Med. 26:466–473. 2009. View Article : Google Scholar : PubMed/NCBI | |
Ağladıoğlu SY, Aycan Z, Çetinkaya S, Baş VN, Önder A, Peltek Kendirci HN, Doğan H and Ceylaner S: Maturity onset diabetes of youth (MODY) in Turkish children: Sequence analysis of 11 causative genes by next generation sequencing. J Pediatr Endocrinol Metab. 29:487–496. 2016. View Article : Google Scholar : PubMed/NCBI | |
Globa E, Zelinska N, Elblova L, Dusatkova P, Cinek O, Lebl J, Colclough K, Ellard S and Pruhova S: MODY in Ukraine: Genes, clinical phenotypes and treatment. J Pediatr Endocrinol Metab. 30:1095–1103. 2017. View Article : Google Scholar : PubMed/NCBI | |
Johansson BB, Irgens HU, Molnes J, Sztromwasser P, Aukrust I, Juliusson PB, Søvik O, Levy S, Skrivarhaug T, Joner G, et al: Targeted next-generation sequencing reveals MODY in up to 6.5% of antibody-negative diabetes cases listed in the Norwegian Childhood Diabetes Registry. Diabetologia. 60:625–635. 2017. View Article : Google Scholar : PubMed/NCBI | |
Barbitoff YA, Skitchenko RK, Poleshchuk OI, Shikov AE, Serebryakova EA, Nasykhova YA, Polev DE, Shuvalova AR, Shcherbakova IV, Fedyakov MA, et al: Whole-exome sequencing provides insights into monogenic disease prevalence in Northwest Russia. Mol Genet Genomic Med. Sep 3;e9642019.doi: 10.1002/mgg3.964 (Epub ahead of print). PubMed/NCBI | |
Chakera AJ, Steele AM, Gloyn AL, Shepherd MH, Shields B, Ellard S and Hattersley AT: Recognition and management of individuals with hyperglycemia because of a heterozygous glucokinase mutation. Diabetes Care. 38:1383–1392. 2015. View Article : Google Scholar : PubMed/NCBI | |
Murphy R, Ellard S and Hattersley AT: Clinical implications of a molecular genetic classification of monogenic beta-cell diabetes. Nat Clin Pract Endocrinol Metab. 4:200–213. 2008. View Article : Google Scholar : PubMed/NCBI | |
López-Garrido MP, Herranz-Antolín S, Alija-Merillas MJ, Giralt P and Escribano J: Co-inheritance of HNF1a and GCK mutations in a family with maturity-onset diabetes of the young (MODY): Implications for genetic testing. Clin Endocrinol (Oxf). 79:342–347. 2013. View Article : Google Scholar : PubMed/NCBI | |
Thanabalasingham G, Pal A, Selwood MP, Dudley C, Fisher K, Bingley PJ, Ellard S, Farmer AJ, McCarthy MI and Owen KR: Systematic assessment of etiology in adults with a clinical diagnosis of young-onset type 2 diabetes is a successful strategy for identifying maturity-onset diabetes of the young. Diabetes Care. 35:1206–1212. 2012. View Article : Google Scholar : PubMed/NCBI | |
Borowiec M, Liew CW, Thompson R, Boonyasrisawat W, Hu J, Mlynarski WM, El Khattabi I, Kim SH, Marselli L, Rich SS, et al: Mutations at the BLK locus linked to maturity onset diabetes of the young and beta-cell dysfunction. Proc Natl Acad Sci USA. 106:14460–14465. 2009. View Article : Google Scholar : PubMed/NCBI |