HIV‑1 integrase inhibitors targeting various DDE transposases: Retroviral integration versus RAG‑mediated recombination (Review)
- Authors:
- Mihaela Georgiana Mușat
- George Mihai Nițulescu
- Marius Surleac
- Aristidis Tsatsakis
- Demetrios A. Spandidos
- Denisa Margină
-
Affiliations: Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania, National Institute for Infectious Diseases ‘Matei Bals’, 021105 Bucharest, Romania, Department of Forensic Sciences and Toxicology, School of Medicine, University of Crete, 71003 Heraklion, Greece, Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece - Published online on: October 30, 2019 https://doi.org/10.3892/mmr.2019.10777
- Pages: 4749-4762
-
Copyright: © Mușat et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Pace JK II and Feschotte C: The evolutionary history of human DNA transposons: Evidence for intense activity in the primate lineage. Genome Res. 17:422–432. 2007. View Article : Google Scholar : PubMed/NCBI | |
Jangam D, Feschotte C and Betrán E: Transposable Element Domestication As an Adaptation to Evolutionary Conflicts. Trends Genet. 33:817–831. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lee SH, Oshige M, Durant ST, Rasila KK, Williamson EA, Ramsey H, Kwan L, Nickoloff JA and Hromas R: The SET domain protein Metnase mediates foreign DNA integration and links integration to nonhomologous end-joining repair. Proc Natl Acad Sci USA. 102:18075–18080. 2005. View Article : Google Scholar : PubMed/NCBI | |
Hickman AB and Dyda F: DNA Transposition at Work. Chem Rev. 116:12758–12784. 2016. View Article : Google Scholar : PubMed/NCBI | |
McCLINTOCK B: The origin and behavior of mutable loci in maize. Proc Natl Acad Sci USA. 36:344–355. 1950. View Article : Google Scholar : PubMed/NCBI | |
Chandler M, de la Cruz F, Dyda F, Hickman AB, Moncalian G and Ton-Hoang B: Breaking and joining single-stranded DNA: The HUH endonuclease superfamily. Nat Rev Microbiol. 11:525–538. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A, Leroy P, Morgante M, Panaud O, et al: A unified classification system for eukaryotic transposable elements. Nat Rev Genet. 8:973–982. 2007. View Article : Google Scholar : PubMed/NCBI | |
Yuan YW and Wessler SR: The catalytic domain of all eukaryotic cut-and-paste transposase superfamilies. Proc Natl Acad Sci USA. 108:7884–7889. 2011. View Article : Google Scholar : PubMed/NCBI | |
Lacroix C, Giovannini D, Combe A, Bargieri DY, Späth S, Panchal D, Tawk L, Thiberge S, Carvalho TG, Barale JC, et al: FLP/FRT-mediated conditional mutagenesis in pre-erythrocytic stages of Plasmodium berghei. Nat Protoc. 6:1412–1428. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ye J, Hong J and Ye F: Reprogramming rat embryonic fibroblasts into induced pluripotent stem cells using transposon vectors and their chondrogenic differentiation in vitro. Mol Med Rep. 11:989–994. 2015. View Article : Google Scholar : PubMed/NCBI | |
Rice PA and Baker TA: Comparative architecture of transposase and integrase complexes. Nat Struct Biol. 8:302–307. 2001. View Article : Google Scholar | |
Schatz DG and Ji Y: Recombination centres and the orchestration of V(D)J recombination. Nat Rev Immunol. 11:251–263. 2011. View Article : Google Scholar : PubMed/NCBI | |
Dai Y, Wong B, Yen Y-M, Oettinger MA, Kwon J and Johnson RC: Determinants of HMGB proteins required to promote RAG1/2-recombination signal sequence complex assembly and catalysis during V(D)J recombination. Mol Cell Biol. 25:4413–4425. 2005. View Article : Google Scholar : PubMed/NCBI | |
Nishana M, Nilavar NM, Kumari R, Pandey M and Raghavan SC: HIV integrase inhibitor, Elvitegravir, impairs RAG functions and inhibits V(D)J recombination. Cell Death Dis. 8:e28522017. View Article : Google Scholar : PubMed/NCBI | |
Seegulam ME and Ratner L: Integrase inhibitors effective against human T-cell leukemia virus type 1. Antimicrob Agents Chemother. 55:2011–2017. 2011. View Article : Google Scholar : PubMed/NCBI | |
Nadal M, Mas PJ, Blanco AG, Arnan C, Solà M, Hart DJ and Coll M: Structure and inhibition of herpesvirus DNA packaging terminase nuclease domain. Proc Natl Acad Sci USA. 107:16078–16083. 2010. View Article : Google Scholar : PubMed/NCBI | |
Trott O and Olson AJ: AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 31:455–461. 2010.PubMed/NCBI | |
Kim MS, Lapkouski M, Yang W and Gellert M: Crystal structure of the V(D)J recombinase RAG1-RAG2. Nature. 518:507–511. 2015. View Article : Google Scholar : PubMed/NCBI | |
Avogadro, . Avogadro: an open-source molecular builder and visualization tool. Version 1.0.3. http://AvogadroOpenmoleculesNet/2012 | |
DeLano WL: The PyMOL Molecular Graphics System, Version 1.8Schrödinger LLC; New York, NY: 2002 | |
Kim MS, Chuenchor W, Chen X, Cui Y, Zhang X, Zhou ZH, Gellert M and Yang W: Cracking the DNA Code for V(D)J Recombination. Mol Cell. 70:358–370.e4. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ma Y, Pannicke U, Schwarz K and Lieber MR: Hairpin opening and overhang processing by an Artemis/DNA-dependent protein kinase complex in nonhomologous end joining and V(D)J recombination. Cell. 108:781–794. 2002. View Article : Google Scholar : PubMed/NCBI | |
Ru H, Chambers MG, Fu TM, Tong AB, Liao M and Wu H: Molecular Mechanism of V(D)J Recombination from Synaptic RAG1-RAG2 Complex Structures. Cell. 163:1138–1152. 2015. View Article : Google Scholar : PubMed/NCBI | |
Grazini U, Zanardi F, Citterio E, Casola S, Goding CR and McBlane F: The RING domain of RAG1 ubiquitylates histone H3: A novel activity in chromatin-mediated regulation of V(D)J joining. Mol Cell. 37:282–293. 2010. View Article : Google Scholar : PubMed/NCBI | |
Matthews AGW, Kuo AJ, Ramón-Maiques S, Han S, Champagne KS, Ivanov D, Gallardo M, Carney D, Cheung P, Ciccone DN, et al: RAG2 PHD finger couples histone H3 lysine 4 trimethylation with V(D)J recombination. Nature. 450:1106–1110. 2007. View Article : Google Scholar : PubMed/NCBI | |
Huang S, Tao X, Yuan S, Zhang Y, Li P, Beilinson HA, Zhang Y, Yu W, Pontarotti P, Escriva H, et al: Discovery of an Active RAG Transposon Illuminates the Origins of V(D)J Recombination. Cell. 166:102–114. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Cheng TC, Huang G, Lu Q, Surleac MD, Mandell JD, Pontarotti P, Petrescu AJ, Xu A, Xiong Y, et al: Transposon molecular domestication and the evolution of the RAG recombinase. Nature. 569:79–84. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kang YH, Son CY, Lee CH and Ryu CJ: Aberrant V(D)J cleavages in T cell receptor β enhancer- and p53-deficient lymphoma cells. Oncol Rep. 23:1463–1468. 2010.PubMed/NCBI | |
Lewis SM, Agard E, Suh S and Czyzyk L: Cryptic signals and the fidelity of V(D)J joining. Mol Cell Biol. 17:3125–3136. 1997. View Article : Google Scholar : PubMed/NCBI | |
Papaemmanuil E, Rapado I, Li Y, Potter NE, Wedge DC, Tubio J, Alexandrov LB, Van Loo P, Cooke SL, Marshall J, et al: RAG-mediated recombination is the predominant driver of oncogenic rearrangement in ETV6-RUNX1 acute lymphoblastic leukemia. Nat Genet. 46:116–125. 2014. View Article : Google Scholar : PubMed/NCBI | |
Messier TL, O'Neill JP, Hou SM, Nicklas JA and Finette BA: In vivo transposition mediated by V(D)J recombinase in human T lymphocytes. EMBO J. 22:1381–1388. 2003. View Article : Google Scholar : PubMed/NCBI | |
Reddy YVR, Perkins EJ and Ramsden DA: Genomic instability due to V(D)J recombination-associated transposition. Genes Dev. 20:1575–1582. 2006. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Wu S, Wang J, Li W, Lin Y, Ji C, Xue J and Chen J: Evaluation of the interactions of HIV-1 integrase with small ubiquitin-like modifiers and their conjugation enzyme Ubc9. Int J Mol Med. 30:1053–1060. 2012. View Article : Google Scholar : PubMed/NCBI | |
Gupta K, Turkki V, Sherrill-Mix S, Hwang Y, Eilers G, Taylor L, McDanal C, Wang P, Temelkoff D, Nolte RT, et al: Structural Basis for Inhibitor-Induced Aggregation of HIV Integrase. PLoS Biol. 14:e10025842016. View Article : Google Scholar : PubMed/NCBI | |
Lusic M and Siliciano RF: Nuclear landscape of HIV-1 infection and integration. Nat Rev Microbiol. 15:69–82. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chen JC-H, Krucinski J, Miercke LJW, Finer-Moore JS, Tang AH, Leavitt AD and Stroud RM: Crystal structure of the HIV-1 integrase catalytic core and C-terminal domains: A model for viral DNA binding. Proc Natl Acad Sci USA. 97:8233–8238. 2000. View Article : Google Scholar : PubMed/NCBI | |
Yang W, Hendrickson WA, Crouch RJ and Satow Y: Structure of ribonuclease H phased at 2 A resolution by MAD analysis of the selenomethionyl protein. Science. 249:1398–1405. 1990. View Article : Google Scholar : PubMed/NCBI | |
Venanzi Rullo E, Ceccarelli M, Condorelli F, Facciolà A, Visalli G, D'Aleo F, Paolucci I, Cacopardo B, Pinzone MR, Di Rosa M, et al: Investigational drugs in HIV: Pros and cons of entry and fusion inhibitors (Review). Mol Med Rep. 19:1987–1995. 2019.PubMed/NCBI | |
Wai JS, Egbertson MS, Payne LS, Fisher TE, Embrey MW, Tran LO, Melamed JY, Langford HM, Guare JP Jr, Zhuang L, et al: 4-Aryl-2,4-dioxobutanoic acid inhibitors of HIV-1 integrase and viral replication in cells. J Med Chem. 43:4923–4926. 2000. View Article : Google Scholar : PubMed/NCBI | |
Hazuda DJ, Felock P, Witmer M, Wolfe A, Stillmock K, Grobler JA, Espeseth A, Gabryelski L, Schleif W, Blau C and Miller MD: Inhibitors of strand transfer that prevent integration and inhibit HIV-1 replication in cells. Science. 287:646–650. 2000. View Article : Google Scholar : PubMed/NCBI | |
Summa V, Petrocchi A, Bonelli F, Crescenzi B, Donghi M, Ferrara M, Fiore F, Gardelli C, Gonzalez Paz O, Hazuda DJ, et al: Discovery of raltegravir, a potent, selective orally bioavailable HIV-integrase inhibitor for the treatment of HIV-AIDS infection. J Med Chem. 51:5843–5855. 2008. View Article : Google Scholar : PubMed/NCBI | |
U.S. Food & Drug Administration, . HIV Timeline and History of Approvals. https://www.fda.gov/patients/hivaids/hiv-timeline-and-history-approvalsAugust 1–2018 | |
Di Santo R: Inhibiting the HIV integration process: Past, present, and the future. J Med Chem. 57:539–566. 2014. View Article : Google Scholar : PubMed/NCBI | |
Sato M, Motomura T, Aramaki H, Matsuda T, Yamashita M, Ito Y, Kawakami H, Matsuzaki Y, Watanabe W, Yamataka K, et al: Novel HIV-1 integrase inhibitors derived from quinolone antibiotics. J Med Chem. 49:1506–1508. 2006. View Article : Google Scholar : PubMed/NCBI | |
Lee JSF, Calmy A, Andrieux-Meyer I and Ford N: Review of the safety, efficacy, and pharmacokinetics of elvitegravir with an emphasis on resource-limited settings. HIV AIDS (Auckl). 4:5–15. 2012.PubMed/NCBI | |
Barnhart M and Shelton JD: ARVs: The next generation. Going boldly together to new frontiers of HIV treatment. Glob Health Sci Pract. 3:1–11. 2015. View Article : Google Scholar : PubMed/NCBI | |
Johns BA, Kawasuji T, Weatherhead JG, Taishi T, Temelkoff DP, Yoshida H, Akiyama T, Taoda Y, Murai H, Kiyama R, et al: Carbamoyl pyridone HIV-1 integrase inhibitors 3. A diastereomeric approach to chiral nonracemic tricyclic ring systems and the discovery of dolutegravir (S/GSK1349572) and (S/GSK1265744). J Med Chem. 56:5901–5916. 2013. View Article : Google Scholar : PubMed/NCBI | |
Hare S, Gupta SS, Valkov E, Engelman A and Cherepanov P: Retroviral intasome assembly and inhibition of DNA strand transfer. Nature. 464:232–236. 2010. View Article : Google Scholar : PubMed/NCBI | |
Hare S, Smith SJ, Métifiot M, Jaxa-Chamiec A, Pommier Y, Hughes SH and Cherepanov P: Structural and functional analyses of the second-generation integrase strand transfer inhibitor dolutegravir (S/GSK1349572). Mol Pharmacol. 80:565–572. 2011. View Article : Google Scholar : PubMed/NCBI | |
Hightower KE, Wang R, Deanda F, Johns BA, Weaver K, Shen Y, Tomberlin GH, Carter HL III, Broderick T, Sigethy S, et al: Dolutegravir (S/GSK1349572) exhibits significantly slower dissociation than raltegravir and elvitegravir from wild-type and integrase inhibitor-resistant HIV-1 integrase-DNA complexes. Antimicrob Agents Chemother. 55:4552–4559. 2011. View Article : Google Scholar : PubMed/NCBI | |
Yoshinaga T, Kobayashi M, Seki T, Miki S, Wakasa-Morimoto C, Suyama-Kagitani A, Kawauchi-Miki S, Taishi T, Kawasuji T, Johns BA, et al: Antiviral characteristics of GSK1265744, an HIV integrase inhibitor dosed orally or by long-acting injection. Antimicrob Agents Chemother. 59:397–406. 2015. View Article : Google Scholar : PubMed/NCBI | |
Tsiang M, Jones GS, Goldsmith J, Mulato A, Hansen D, Kan E, Tsai L, Bam RA, Stepan G, Stray KM, et al: Antiviral activity of bictegravir (GS-9883), a novel potent HIV-1 integrase strand transfer inhibitor with an improved resistance profile. Antimicrob Agents Chemother. 60:7086–7097. 2016.PubMed/NCBI | |
Mekouar K, Mouscadet JF, Desmaële D, Subra F, Leh H, Savouré D, Auclair C and d'Angelo J: Styrylquinoline derivatives: A new class of potent HIV-1 integrase inhibitors that block HIV-1 replication in CEM cells. J Med Chem. 41:2846–2857. 1998. View Article : Google Scholar : PubMed/NCBI | |
Deprez E, Barbe S, Kolaski M, Leh H, Zouhiri F, Auclair C, Brochon JC, Le Bret M and Mouscadet JF: Mechanism of HIV-1 integrase inhibition by styrylquinoline derivatives in vitro. Mol Pharmacol. 65:85–98. 2004. View Article : Google Scholar : PubMed/NCBI | |
Han Y-S, Xiao W-L, Quashie PK, Mesplède T, Xu H, Deprez E, Delelis O, Pu JX, Sun HD and Wainberg MA: Development of a fluorescence-based HIV-1 integrase DNA binding assay for identification of novel HIV-1 integrase inhibitors. Antiviral Res. 98:441–448. 2013. View Article : Google Scholar : PubMed/NCBI | |
Bonnenfant S, Thomas CM, Vita C, Subra F, Deprez E, Zouhiri F, Desmaële D, D'Angelo J, Mouscadet JF and Leh H: Styrylquinolines, integrase inhibitors acting prior to integration: A new mechanism of action for anti-integrase agents. J Virol. 78:5728–5736. 2004. View Article : Google Scholar : PubMed/NCBI | |
Passos DO, Li M, Yang R, Rebensburg SV, Ghirlando R, Jeon Y, Shkriabai N, Kvaratskhelia M, Craigie R and Lyumkis D: Cryo-EM structures and atomic model of the HIV-1 strand transfer complex intasome. Science. 355:89–92. 2017. View Article : Google Scholar : PubMed/NCBI | |
Quashie PK, Han YS, Hassounah S, Mesplède T and Wainberg MA: Structural studies of the HIV-1 integrase protein: Compound screening and characterization of a DNA-binding inhibitor. PLoS One. 10:e01283102015. View Article : Google Scholar : PubMed/NCBI | |
Shkriabai N, Patil SS, Hess S, Budihas SR, Craigie R, Burke TR Jr, Le Grice SF and Kvaratskhelia M: Identification of an inhibitor-binding site to HIV-1 integrase with affinity acetylation and mass spectrometry. Proc Natl Acad Sci USA. 101:6894–6899. 2004. View Article : Google Scholar : PubMed/NCBI | |
Du L, Zhao YX, Yang LM, Zheng YT, Tang Y, Shen X and Jiang HL: Symmetrical 1-pyrrolidineacetamide showing anti-HIV activity through a new binding site on HIV-1 integrase. Acta Pharmacol Sin. 29:1261–1267. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ge H, Si Y and Roeder RG: Isolation of cDNAs encoding novel transcription coactivators p52 and p75 reveals an alternate regulatory mechanism of transcriptional activation. EMBO J. 17:6723–6729. 1998. View Article : Google Scholar : PubMed/NCBI | |
Maertens G, Cherepanov P, Pluymers W, Busschots K, De Clercq E, Debyser Z and Engelborghs Y: LEDGF/p75 is essential for nuclear and chromosomal targeting of HIV-1 integrase in human cells. J Biol Chem. 278:33528–33539. 2003. View Article : Google Scholar : PubMed/NCBI | |
Llano M, Delgado S, Vanegas M and Poeschla EM: Lens epithelium-derived growth factor/p75 prevents proteasomal degradation of HIV-1 integrase. J Biol Chem. 279:55570–55577. 2004. View Article : Google Scholar : PubMed/NCBI | |
De Rijck J, Vandekerckhove L, Gijsbers R, Hombrouck A, Hendrix J, Vercammen J, Engelborghs Y, Christ F and Debyser Z: Overexpression of the lens epithelium-derived growth factor/p75 integrase binding domain inhibits human immunodeficiency virus replication. J Virol. 80:11498–11509. 2006. View Article : Google Scholar : PubMed/NCBI | |
Cherepanov P, Ambrosio ALB, Rahman S, Ellenberger T and Engelman A: Structural basis for the recognition between HIV-1 integrase and transcriptional coactivator p75. Proc Natl Acad Sci USA. 102:17308–17313. 2005. View Article : Google Scholar : PubMed/NCBI | |
Du L, Zhao Y, Chen J, Yang L, Zheng Y, Tang Y, Shen X and Jiang H: D77, one benzoic acid derivative, functions as a novel anti-HIV-1 inhibitor targeting the interaction between integrase and cellular LEDGF/p75. Biochem Biophys Res Commun. 375:139–144. 2008. View Article : Google Scholar : PubMed/NCBI | |
Christ F, Voet A, Marchand A, Nicolet S, Desimmie BA, Marchand D, Bardiot D, Van der Veken NJ, Van Remoortel B, Strelkov SV, et al: Rational design of small-molecule inhibitors of the LEDGF/p75-integrase interaction and HIV replication. Nat Chem Biol. 6:442–448. 2010. View Article : Google Scholar : PubMed/NCBI | |
Fader LD, Malenfant E, Parisien M, Carson R, Bilodeau F, Landry S, Pesant M, Brochu C, Morin S, Chabot C, et al: Discovery of BI 224436, a Noncatalytic Site Integrase Inhibitor (NCINI) of HIV-1. ACS Med Chem Lett. 5:422–427. 2014. View Article : Google Scholar : PubMed/NCBI | |
Tsiang M, Jones GS, Niedziela-Majka A, Kan E, Lansdon EB, Huang W, Hung M, Samuel D, Novikov N, Xu Y, et al: New class of HIV-1 integrase (IN) inhibitors with a dual mode of action. J Biol Chem. 287:21189–21203. 2012. View Article : Google Scholar : PubMed/NCBI | |
Melek M, Jones JM, O'Dea MH, Pais G, Burke TR Jr, Pommier Y, Neamati N and Gellert M: Effect of HIV integrase inhibitors on the RAG1/2 recombinase. Proc Natl Acad Sci USA. 99:134–137. 2002. View Article : Google Scholar : PubMed/NCBI | |
Goldgur Y, Craigie R, Cohen GH, Fujiwara T, Yoshinaga T, Fujishita T, Sugimoto H, Endo T, Murai H and Davies DR: Structure of the HIV-1 integrase catalytic domain complexed with an inhibitor: A platform for antiviral drug design. Proc Natl Acad Sci USA. 96:13040–13043. 1999. View Article : Google Scholar : PubMed/NCBI | |
de Miguel R, Montejano R, Stella-Ascariz N and Arribas JR: A safety evaluation of raltegravir for the treatment of HIV. Expert Opin Drug Saf. 17:217–223. 2018. View Article : Google Scholar : PubMed/NCBI | |
Huhn GD, Badri S, Vibhakar S, Tverdek F, Crank C, Lubelchek R, Max B, Simon D, Sha B, Adeyemi O, et al: Early development of non-hodgkin lymphoma following initiation of newer class antiretroviral therapy among HIV-infected patients - implications for immune reconstitution. AIDS Res Ther. 7:442010. View Article : Google Scholar : PubMed/NCBI | |
Steigbigel RT, Cooper DA, Kumar PN, Eron JE, Schechter M, Markowitz M, Loutfy MR, Lennox JL, Gatell JM, Rockstroh JK, et al BENCHMRK Study Teams, : Raltegravir with optimized background therapy for resistant HIV-1 infection. N Engl J Med. 359:339–354. 2008. View Article : Google Scholar : PubMed/NCBI | |
Barbaro G and Barbarini G: HIV infection and cancer in the era of highly active antiretroviral therapy (Review). Oncol Rep. 17:1121–1126. 2007.PubMed/NCBI | |
Gillead Sciences: sNDA 207561/S-014. Genvoya (elvitegravir/cobicistat/emtricitabine/tenofovir alafenamide). Clinical and Cross-Discipline Team Leader Review. | |
Huye LE, Purugganan MM, Jiang M-M and Roth DB: Mutational analysis of all conserved basic amino acids in RAG-1 reveals catalytic, step arrest, and joining-deficient mutants in the V(D)J recombinase. Mol Cell Biol. 22:3460–3473. 2002. View Article : Google Scholar : PubMed/NCBI | |
Davies DR, Goryshin IY, Reznikoff WS and Rayment I: Three-dimensional structure of the Tn5 synaptic complex transposition intermediate. Science. 289:77–85. 2000. View Article : Google Scholar : PubMed/NCBI | |
Ason B, Knauss DJ, Balke AM, Merkel G, Skalka AM and Reznikoff WS: Targeting Tn5 transposase identifies human immunodeficiency virus type 1 inhibitors. Antimicrob Agents Chemother. 49:2035–2043. 2005. View Article : Google Scholar : PubMed/NCBI | |
Czyz A, Stillmock KA, Hazuda DJ and Reznikoff WS: Dissecting Tn5 transposition using HIV-1 integrase diketoacid inhibitors. Biochemistry. 46:10776–10789. 2007. View Article : Google Scholar : PubMed/NCBI | |
Koh Y, Matreyek KA and Engelman A: Differential sensitivities of retroviruses to integrase strand transfer inhibitors. J Virol. 85:3677–3682. 2011. View Article : Google Scholar : PubMed/NCBI | |
Beck-Engeser GB, Eilat D, Harrer T, Jäck HM and Wabl M: Early onset of autoimmune disease by the retroviral integrase inhibitor raltegravir. Proc Natl Acad Sci USA. 106:20865–20870. 2009. View Article : Google Scholar : PubMed/NCBI | |
Stetson DB, Ko JS, Heidmann T and Medzhitov R: Trex1 prevents cell-intrinsic initiation of autoimmunity. Cell. 134:587–598. 2008. View Article : Google Scholar : PubMed/NCBI | |
Wolkowicz UM, Morris ER, Robson M, Trubitsyna M and Richardson JM: Structural basis of Mos1 transposase inhibition by the anti-retroviral drug Raltegravir. ACS Chem Biol. 9:743–751. 2014. View Article : Google Scholar : PubMed/NCBI | |
Shaheen M, Williamson E, Nickoloff J, Lee SH and Hromas R: Metnase/SETMAR: A domesticated primate transposase that enhances DNA repair, replication, and decatenation. Genetica. 138:559–566. 2010. View Article : Google Scholar : PubMed/NCBI | |
Williamson EA, Damiani L, Leitao A, Hu C, Hathaway H, Oprea T, Sklar L, Shaheen M, Bauman J, Wang W, et al: Targeting the transposase domain of the DNA repair component Metnase to enhance chemotherapy. Cancer Res. 72:6200–6208. 2012. View Article : Google Scholar : PubMed/NCBI | |
Marino-Merlo F, Mastino A, Grelli S, Hermine O, Bazarbachi A and Macchi B: Future Perspectives on Drug Targeting in Adult T Cell Leukemia-Lymphoma. Front Microbiol. 9:9252018. View Article : Google Scholar : PubMed/NCBI | |
Rabaaoui S, Zouhiri F, Lançon A, Leh H, d'Angelo J and Wattel E: Inhibitors of strand transfer that prevent integration and inhibit human T-cell leukemia virus type 1 early replication. Antimicrob Agents Chemother. 52:3532–3541. 2008. View Article : Google Scholar : PubMed/NCBI | |
Shimura K, Kodama E, Sakagami Y, Matsuzaki Y, Watanabe W, Yamataka K, Watanabe Y, Ohata Y, Doi S, Sato M, et al: Broad antiretroviral activity and resistance profile of the novel human immunodeficiency virus integrase inhibitor elvitegravir (JTK-303/GS-9137). J Virol. 82:764–774. 2008. View Article : Google Scholar : PubMed/NCBI | |
Passos DO, Li M, Yang R, Rebensburg SV, Ghirlando R, Jeon Y, Shkriabai N, Kvaratskhelia M, Craigie R and Lyumkis D: Cryo-EM structures and atomic model of the HIV-1 strand transfer complex intasome. Science. 355:89–92. 2017. View Article : Google Scholar : PubMed/NCBI |