1
|
American Diabetes Association: Diagnosis
and classification of diabetes mellitus. Diabetes Care. 35 (Suppl
1):S64–S71. 2012. View Article : Google Scholar : PubMed/NCBI
|
2
|
Hamann C, Kirschner S, Günther KP and
Hofbauer LC: Bone, sweet bone-osteoporotic fractures in diabetes
mellitus. Nat Rev Endocrinol. 8:297–305. 2012. View Article : Google Scholar : PubMed/NCBI
|
3
|
Kurra S, Fink DA and Siris ES:
Osteoporosis-associated fracture and diabetes. Endocrinol Metab
Clin North Am. 43:233–243. 2014. View Article : Google Scholar : PubMed/NCBI
|
4
|
Johnell O and Kanis JA: An estimate of the
worldwide prevalence and disability associated with osteoporotic
fractures. Osteoporosis Int. 17:1726–1733. 2006. View Article : Google Scholar
|
5
|
Loureiro MB, Ururahy MA, Freire-Neto FP,
Oliveira GH, Duarte VM, Luchessi AD, Brandão-Neto J, Hirata RD,
Hirata MH, Maciel-Neto JJ, et al: Low bone mineral density is
associated to poor glycemic control and increased OPG expression in
children and adolescents with type 1 diabetes. Diabetes Res Clin
Pract. 103:452–457. 2014. View Article : Google Scholar : PubMed/NCBI
|
6
|
Janghorbani M, Feskanich D, Willett WC and
Hu F: Prospective study of diabetes and risk of hip fracture: The
nurses' health study. Diabetes Care. 29:1573–1578. 2006. View Article : Google Scholar : PubMed/NCBI
|
7
|
Gunczler P, Lanes R, Paoli M, Martinis R,
Villaroel O and Weisinger JR: Decreased bone mineral density and
bone formation markers shortly after diagnosis of clinical type 1
diabetes mellitus. J Pediatr Endocrinol Metab. 14:525–528. 2001.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Kemink SA, Hermus AR, Swinkels LM,
Lutterman JA and Smals AG: Osteopenia in insulin-dependent diabetes
mellitus; prevalence and aspects of pathophysiology. J Endocrinol
Invest. 23:295–303. 2000. View Article : Google Scholar : PubMed/NCBI
|
9
|
Vestergaard P: Discrepancies in bone
mineral density and fracture risk in patients with type 1 and type
2 diabetes-a meta-analysis. Osteoporosis Int. 18:427–444. 2007.
View Article : Google Scholar
|
10
|
Cunha JS, Ferreira VM, Maquigussa E, Naves
MA and Boim MA: Effects of high glucose and high insulin
concentrations on osteoblast function in vitro. Cell Tissue Res.
358:249–256. 2014. View Article : Google Scholar : PubMed/NCBI
|
11
|
Gong K, Qu B, Wang C, Zhou J, Liao D,
Zheng W and Pan X: Peroxisome proliferator-activated receptor a
facilitates osteogenic differentiation in MC3T3-E1 cells via the
Sirtuin 1-dependent signaling pathway. Mol Cells. 40:393–400.
2017.PubMed/NCBI
|
12
|
North RA: P2X receptors. Philos Trans R
Soc Lond B Biol Sci. 371(pii): 201504272016. View Article : Google Scholar : PubMed/NCBI
|
13
|
Nicke A, Bäumert HG, Rettinger J, Eichele
A, Lambrecht G, Mutschler E and Schmalzing G: P2X1 and P2X3
receptors form stable trimers: A novel structural motif of
ligand-gated ion channels. EMBO J. 17:3016–3028. 1998. View Article : Google Scholar : PubMed/NCBI
|
14
|
Aschrafi A, Sadtler S, Niculescu C,
Rettinger J and Schmalzing G: Trimeric architecture of homomeric
P2X2 and heteromeric P2X1+2 receptor subtypes. J Mol Biol.
342:333–343. 2004. View Article : Google Scholar : PubMed/NCBI
|
15
|
Burnstock G and Kennedy C: P2X receptors
in health and disease. Adv Pharmacol. 61:333–372. 2011. View Article : Google Scholar : PubMed/NCBI
|
16
|
Baconguis I, Hattori M and Gouaux E:
Unanticipated parallels in architecture and mechanism between
ATP-gated P2X receptors and acid sensing ion channels. Curr Opin
Struct Biol. 23:277–284. 2013. View Article : Google Scholar : PubMed/NCBI
|
17
|
Schneider M, Prudic K, Pippel A,
Klapperstück M, Braam U, Müller CE, Schmalzing G and Markwardt F:
Interaction of Purinergic P2X4 and P2X7 receptor subunits. Front
Pharmacol. 8:8602017. View Article : Google Scholar : PubMed/NCBI
|
18
|
Dubyak GR: P2X7 receptor regulation of
non-classical secretion from immune effector cells. Cell Microbiol.
14:1697–1706. 2012. View Article : Google Scholar : PubMed/NCBI
|
19
|
Pupovac A and Sluyter R: Roles of
extracellular nucleotides and P2 receptors in ectodomain shedding.
Cell Mol Life Sci. 73:4159–4173. 2016. View Article : Google Scholar : PubMed/NCBI
|
20
|
Miller CM, Boulter NR, Fuller SJ,
Zakrzewski AM, Lees MP, Saunders BM, Wiley JS and Smith NC: The
role of the P2X7 receptor in infectious diseases. PLoS
Pathog. 7:e10022122011. View Article : Google Scholar : PubMed/NCBI
|
21
|
Coutinho-Silva R, Robson T, Beales PE and
Burnstock G: Changes in expression of P2X7 receptors in NOD mouse
pancreas during the development of diabetes. Autoimmunity.
40:108–116. 2007. View Article : Google Scholar : PubMed/NCBI
|
22
|
Menzies RI, Booth JWR, Mullins JJ, Bailey
MA, Tam FWK, Norman JT and Unwin RJ: Hyperglycemia-induced renal
P2X7 receptor activation enhances diabetes-related injury.
EBioMedicine. 19:73–83. 2017. View Article : Google Scholar : PubMed/NCBI
|
23
|
Portillo JC, Lopez Corcino Y, Miao Y, Tang
J, Sheibani N, Kern TS, Dubyak GR and Subauste CS: CD40 in retinal
Muller cells induces P2X7-dependent cytokine expression in
macrophages/microglia in diabetic mice and development of early
experimental diabetic retinopathy. Diabetes. 66:483–493. 2017.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Kreft E, Kowalski R, Jankowski M and
Szczepanska-Konkel M: Renal vasculature reactivity to agonist of
P2X7 receptor is increased in streptozotocin-induced diabetes.
Pharmacol Rep. 68:71–74. 2016. View Article : Google Scholar : PubMed/NCBI
|
25
|
Wesselius A, Bours MJ, Henriksen Z, Syberg
S, Petersen S, Schwarz P, Jørgensen NR, van Helden S and Dagnelie
PC: Association of P2X7 receptor polymorphisms with bone mineral
density and osteoporosis risk in a cohort of Dutch fracture
patients. Osteoporos Int. 24:1235–1246. 2013. View Article : Google Scholar : PubMed/NCBI
|
26
|
Grol MW, Brooks PJ, Pereverzev A and Dixon
SJ: P2X7 nucleotide receptor signaling potentiates the
Wnt/β-catenin pathway in cells of the osteoblast lineage.
Purinergic Signal. 12:509–520. 2016. View Article : Google Scholar : PubMed/NCBI
|
27
|
Lu W, Albalawi F, Beckel JM, Lim JC,
Laties AM and Mitchell CH: The P2X7 receptor links mechanical
strain to cytokine IL-6 up-regulation and release in neurons and
astrocytes. J Neurochem. 141:436–448. 2017. View Article : Google Scholar : PubMed/NCBI
|
28
|
Geraghty NJ, Belfiore L, Ly D, Adhikary
SR, Fuller SJ, Varikatt W, Sanderson-Smith ML, Sluyter V, Alexander
SI, Sluyter R and Watson D: The P2X7 receptor antagonist Brilliant
Blue G reduces serum human interferon-γ in a humanized mouse model
of graft-versus-host disease. Clin Exp Immunol. 190:79–95. 2017.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C (T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Sharma U, Pal D and Prasad R: Alkaline
phosphatase: An overview. Indian J Clin Biochem. 29:269–278. 2014.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Romagnoli E, Minisola G, Carnevale V,
Scillitani A, Frusciante V, Aliberti G and Minisola S: Assessment
of serum total and bone alkaline phosphatase measurement in
clinical practice. Clin Chem Lab Med. 36:163–168. 1998. View Article : Google Scholar : PubMed/NCBI
|
32
|
Fauran-Clavel MJ and Oustrin J: Alkaline
phosphatase and bone calcium parameters. Bone. 7:95–99. 1986.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Langlois MR, Delanghe JR, Kaufman JM, De
Buyzere ML, Van Hoecke MJ and Leroux-Roels GG: Posttranslational
heterogeneity of bone alkaline phosphatase in metabolic bone
disease. Eur J Clin Chem Clin Biochem. 32:675–680. 1994.PubMed/NCBI
|
34
|
Wei J and Karsenty G: An overview of the
metabolic functions of osteocalcin. Rev Endocr Metab Disord.
16:93–98. 2015. View Article : Google Scholar : PubMed/NCBI
|
35
|
Lee NK, Sowa H, Hinoi E, Ferron M, Ahn JD,
Confavreux C, Dacquin R, Mee PJ, McKee MD, Jung DY, et al:
Endocrine regulation of energy metabolism by the skeleton. Cell.
130:456–469. 2007. View Article : Google Scholar : PubMed/NCBI
|
36
|
Wei J, Hanna T, Suda N, Karsenty G and
Ducy P: Osteocalcin promotes β-cell proliferation during
development and adulthood through Gprc6a. Diabetes. 63:1021–1031.
2014. View Article : Google Scholar : PubMed/NCBI
|
37
|
Pi M, Nishimoto SK and Quarles LD: GPRC6A:
Jack of all metabolism (or master of none). Mol Metab. 6:185–193.
2017. View Article : Google Scholar : PubMed/NCBI
|
38
|
Wu M, Ai W, Chen L, Zhao S and Liu E:
Bradykinin receptors and EphB2/EphrinB2 pathway in response to high
glucose-induced osteoblast dysfunction and hyperglycemia-induced
bone deterioration in mice. Int J Mol Med. 37:565–574. 2016.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Nicke A, Kuan YH, Masin M, Rettinger J,
Marquez-Klaka B, Bender O, Górecki DC, Murrell-Lagnado RD and Soto
F: A functional P2X7 splice variant with an alternative
transmembrane domain 1 escapes gene inactivation in P2X7 knock-out
mice. J Biol Chem. 284:25813–25822. 2009. View Article : Google Scholar : PubMed/NCBI
|