1
|
Kim BS, Kang HJ, Park JY and Lee J:
Fucoidan promotes osteoblast differentiation via JNK- and
ERK-dependent BMP2-Smad 1/5/8 signaling in human mesenchymal stem
cells. Exp Mol Med. 47:e1282015. View Article : Google Scholar : PubMed/NCBI
|
2
|
Moon JS, Kim SH, Oh SH, Jeong YW, Kang JH,
Park JC, Son HJ, Bae S, Park BI, Kim MS, et al: Relaxin augments
BMP-2-induced osteoblast differentiation and bone formation. J Bone
Miner Res. 29:1586–1596. 2014. View Article : Google Scholar : PubMed/NCBI
|
3
|
Hu K and Olsen BR: Osteoblast-derived VEGF
regulates osteoblast differentiation and bone formation during bone
repair. J Clin Invest. 126:509–526. 2016. View Article : Google Scholar : PubMed/NCBI
|
4
|
Li KL, Chen J, Li ZH, Zhao L and He YN:
p53 negatively regulates the osteogenic differentiation of vascular
smooth muscle cells in mice with chronic kidney disease. Cardiovasc
J Afr. 23:e1–e9. 2012. View Article : Google Scholar : PubMed/NCBI
|
5
|
Qian K, Xu H, Dai T and Shi K: Effects of
Tanshinone IIA on osteogenic differentiation of mouse bone marrow
mesenchymal stem cells. Naunyn Schmiedebergs Arch Pharmacol.
388:1201–1209. 2015. View Article : Google Scholar : PubMed/NCBI
|
6
|
Papathanasopoulos A, Kouroupis D, Henshaw
K, McGonagle D, Jones EA and Giannoudis PV: Effects of
antithrombotic drugs fondaparinux and tinzaparin on in vitro
proliferation and osteogenic and chondrogenic differentiation of
bone-derived mesenchymal stem cells. J Orthop Res. 29:1327–1335.
2011. View Article : Google Scholar : PubMed/NCBI
|
7
|
Peng S, Gao D, Gao C, Wei P, Niu M and
Shuai C: MicroRNAs regulate signaling pathways in osteogenic
differentiation of mesenchymal stem cells (Review). Mol Med Rep.
14:623–629. 2016. View Article : Google Scholar : PubMed/NCBI
|
8
|
Jiang C, Sun J, Dai Y, Cao P, Zhang L,
Peng S, Zhou Y, Li G, Tang J and Xiang J: HIF-1A and C/EBPs
transcriptionally regulate adipogenic differentiation of bone
marrow-derived MSCs in hypoxia. Stem Cell Res Ther. 6:212015.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Cui H, Yi Q, Feng J, Yang L and Tang L:
Mechano growth factor E peptide regulates migration and
differentiation of bone marrow mesenchymal stem cells. J Mol
Endocrinol. 52:111–120. 2014. View Article : Google Scholar : PubMed/NCBI
|
10
|
Matsushita K, Itoh S, Ikeda S, Yamamoto Y,
Yamauchi Y and Hayashi M: LIF/STAT3/SOCS3 signaling pathway in
murine bone marrow stromal cells suppresses osteoblast
differentiation. J Cell Biochem. 115:1262–1268. 2014. View Article : Google Scholar : PubMed/NCBI
|
11
|
Li T, Pan H and Li R: The dual regulatory
role of miR-204 in cancer. Tumour Biol. 37:11667–11677. 2016.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Doench JG and Sharp PA: Specificity of
microRNA target selection in translational repression. Genes Dev.
18:504–511. 2004. View Article : Google Scholar : PubMed/NCBI
|
13
|
Zhu X, Shen H, Yin X, Long L, Chen X, Feng
F, Liu Y, Zhao P, Xu Y, Li M, et al: IL-6R/STAT3/miR-204 feedback
loop contributes to cisplatin resistance of epithelial ovarian
cancer cells. Oncotarget. 8:39154–39166. 2017.PubMed/NCBI
|
14
|
Wu X, Zeng Y, Wu S, Zhong J, Wang Y and Xu
J: MiR-204, down-regulated in retinoblastoma, regulates
proliferation and invasion of human retinoblastoma cells by
targeting CyclinD2 and MMP-9. FEBS Lett. 589:645–650. 2015.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Zhao J, Wang C, Song Y and Fang B: Arsenic
trioxide and microRNA-204 display contrary effects on regulating
adipogenic and osteogenic differentiation of mesenchymal stem cells
in aplastic anemia. Acta Biochim Biophys Sin (Shanghai).
46:885–893. 2014. View Article : Google Scholar : PubMed/NCBI
|
16
|
Mansurabadi R, Abroun S, Hajifathali A,
Asri A, Atashi A and Haghighi M: Expression of hsa-MIR-204, RUNX2,
PPARγ and BCL2 in bone marrow derived mesenchymal stem cells from
multiple myeloma patients and normal individuals. Cell J. 19 (Suppl
1):S27–S36. 2017.
|
17
|
Groeneveld MC, Everts V and Beertsen W:
Alkaline phosphatase activity in the periodontal ligament and
gingiva of the rat molar: Its relation to cementum formation. J
Dent Res. 74:1374–1381. 1995. View Article : Google Scholar : PubMed/NCBI
|
18
|
Nanke Y, Kotake S, Akama H and Kamatani N:
Alkaline phosphatase in rheumatoid arthritis patients: Possible
contribution of bone-type ALP to the raised activities of ALP in
rheumatoid arthritis patients. Clin Rheumatol. 21:198–202. 2002.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Zhang H and Bradley A: Mice deficient for
BMP2 are nonviable and have defects in amnion/chorion and cardiac
development. Development. 122:2977–2986. 1996.PubMed/NCBI
|
20
|
Ducy P and Karsenty G: The family of bone
morphogenetic proteins. Kidney Int. 57:2207–2214. 2000. View Article : Google Scholar : PubMed/NCBI
|
21
|
Rosen V: BMP2 signaling in bone
development and repair. Cytokine Growth Factor Rev. 20:475–480.
2009. View Article : Google Scholar : PubMed/NCBI
|
22
|
Singh AP, Castranio T, Scott G, Guo D,
Harris MA, Ray M, Harris SE and Mishina Y: Influences of reduced
expression of maternal bone morphogenetic protein 2 on mouse
embryonic development. Sex Dev. 2:134–141. 2008. View Article : Google Scholar : PubMed/NCBI
|
23
|
Lamplot JD, Qin J, Nan G, Wang J, Liu X,
Yin L, Tomal J, Li R, Shui W, Zhang H, et al: BMP9 signaling in
stem cell differentiation and osteogenesis. Am J Stem Cells.
2:1–21. 2013.PubMed/NCBI
|
24
|
Peng Y, Kang Q, Cheng H, Li X, Sun MH,
Jiang W, Luu HH, Park JY, Haydon RC and He TC: Transcriptional
characterization of bone morphogenetic proteins (BMPs)-mediated
osteogenic signaling. J Cell Biochem. 90:1149–1165. 2003.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Liu L, Wang J, Li X, Ma J, Shi C, Zhu H,
Xi Q, Zhang J, Zhao X and Gu M: MiR-204-5p suppresses cell
proliferation by inhibiting IGFBP5 in papillary thyroid carcinoma.
Biochem Biophys Res Commun. 457:621–626. 2015. View Article : Google Scholar : PubMed/NCBI
|
27
|
Sun Y, Yu X and Bai Q: miR-204 inhibits
invasion and epithelial-mesenchymal transition by targeting FOXM1
in esophageal cancer. Int J Clin Exp Pathol. 8:12775–12783.
2015.PubMed/NCBI
|
28
|
Shang G, Wang Y, Xu Y, Zhang S, Sun X,
Guan H, Zhao X, Wang Y, Li Y and Zhao G: Long non-coding RNA
TCONS_00041960 enhances osteogenesis and inhibits adipogenesis of
rat bone marrow mesenchymal stem cell by targeting miR-204-5p and
miR-125a-3p. J Cell Physiol. 233:6041–6051. 2018. View Article : Google Scholar : PubMed/NCBI
|
29
|
Pierce AD, Anglin IE, Vitolo MI, Mochin
MT, Underwood KF, Goldblum SE, Kommineni S and Passaniti A:
Glucose-activated RUNX2 phosphorylation promotes endothelial cell
proliferation and an angiogenic phenotype. J Cell Biochem.
113:282–292. 2012. View Article : Google Scholar : PubMed/NCBI
|
30
|
Taipaleenmaki H, Browne G, Akech J, Zustin
J, van Wijnen AJ, Stein JL, Hesse E, Stein GS and Lian JB:
Targeting of Runx2 by miR-135 and miR-203 impairs progression of
breast cancer and metastatic bone disease. Cancer Res.
75:1433–1444. 2015. View Article : Google Scholar : PubMed/NCBI
|
31
|
Chen H, Ghori-Javed FY, Rashid H, Adhami
MD, Serra R, Gutierrez SE and Javed A: Runx2 regulates endochondral
ossification through control of chondrocyte proliferation and
differentiation. J Bone Miner Res. 29:2653–2665. 2014. View Article : Google Scholar : PubMed/NCBI
|
32
|
Mukaiyama K, Kamimura M, Uchiyama S,
Ikegami S, Nakamura Y and Kato H: Elevation of serum alkaline
phosphatase (ALP) level in postmenopausal women is caused by high
bone turnover. Aging Clin Exp Res. 27:413–418. 2015. View Article : Google Scholar : PubMed/NCBI
|
33
|
Magnusson P, Davie MW and Sharp CA:
Circulating and tissue-derived isoforms of bone alkaline
phosphatase in Paget's disease of bone. Scand J Clin Lab Invest.
70:128–135. 2010. View Article : Google Scholar : PubMed/NCBI
|
34
|
Rogers MB, Shah TA and Shaikh NN: Turning
bone morphogenetic protein 2 (BMP2) on and off in mesenchymal
cells. J Cell Biochem. 116:2127–2138. 2015. View Article : Google Scholar : PubMed/NCBI
|
35
|
Deng M, Liu P, Xiao H, Zhang Y, Wang Y,
Zhao J and Xu J: Improving the osteogenic efficacy of BMP2 with
mechano growth factor by regulating the signaling events in BMP
pathway. Cell Tissue Res. 361:723–731. 2015. View Article : Google Scholar : PubMed/NCBI
|
36
|
Kwong FN, Hoyland JA, Evans CH and
Freemont AJ: Regional and cellular localisation of BMPs and their
inhibitors' expression in human fractures. Int Orthop. 33:281–288.
2009. View Article : Google Scholar : PubMed/NCBI
|
37
|
Myers TJ, Longobardi L, Willcockson H,
Temple JD, Tagliafierro L, Ye P, Li T, Esposito A, Moats-Staats BM
and Spagnoli A: BMP2 regulation of CXCL12 cellular, temporal, and
spatial expression is essential during fracture repair. J Bone
Miner Res. 30:2014–2027. 2015. View Article : Google Scholar : PubMed/NCBI
|
38
|
Kwong FN, Hoyland JA, Freemont AJ and
Evans CH: Altered relative expression of BMPs and BMP inhibitors in
cartilaginous areas of human fractures progressing towards
nonunion. J Orthop Res. 27:752–757. 2009. View Article : Google Scholar : PubMed/NCBI
|
39
|
Bensimon-Brito A, Cardeira J, Dionisio G,
Huysseune A, Cancela ML and Witten PE: Revisiting in vivo staining
with alizarin red S-a valuable approach to analyse zebrafish
skeletal mineralization during development and regeneration. BMC
Dev Biol. 16:22016. View Article : Google Scholar : PubMed/NCBI
|
40
|
Ovchinnikov D: Alcian blue/alizarin red
staining of cartilage and bone in mouse. Cold Spring Harb Protoc.
2009:pdb.prot5170. 2009. View Article : Google Scholar : PubMed/NCBI
|
41
|
Nagy A, Gertsenstein M, Vintersten K and
Behringer R: Alizarin red staining of post-natal bone in mouse.
Cold Spring Harb Protoc. 2009:pdb.prot5171. 2009. View Article : Google Scholar
|
42
|
Reynaud L and Jocteur-Monrozier A:
Skeletal examination by alizarin staining. Methods Mol Biol.
947:201–213. 2013. View Article : Google Scholar : PubMed/NCBI
|
43
|
Bruneel B and Witten PE: Power and
challenges of using zebrafish as a model for skeletal tissue
imaging. Connect Tissue Res. 56:161–173. 2015. View Article : Google Scholar : PubMed/NCBI
|