Molecular basis of degenerative spinal disorders from a proteomic perspective (Review)
- Authors:
- Chang Liu
- Minghui Yang
- Libangxi Liu
- Yang Zhang
- Qi Zhu
- Cong Huang
- Hongwei Wang
- Yaqing Zhang
- Haiyin Li
- Changqing Li
- Bo Huang
- Chencheng Feng
- Yue Zhou
-
Affiliations: Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing 400037, P.R. China, Medical Research Center, Southwestern Hospital, Army Medical University, Chongqing 400037, P.R. China, Department of Orthopedics, General Hospital of Shenyang Military Area Command of Chinese PLA, Shenyang, Liaoning 110016, P.R. China - Published online on: November 12, 2019 https://doi.org/10.3892/mmr.2019.10812
- Pages: 9-19
-
Copyright: © Liu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Iorio JA, Jakoi AM and Singla A: Biomechanics of degenerative spinal disorders. Asian Spine J. 10:377–384. 2016. View Article : Google Scholar : PubMed/NCBI | |
Cheung KM, Karppinen J, Chan D, Ho DW, Song YQ, Sham P, Cheah KS, Leong JC and Luk KD: Prevalence and pattern of lumbar magnetic resonance imaging changes in a population study of one thousand forty-three individuals. Spine (Phila Pa 1976). 34:934–940. 2009. View Article : Google Scholar : PubMed/NCBI | |
Szpalski M and Gunzburg R: Lumbar spinal stenosis in the elderly: An overview. Eur Spine J. 12 (Suppl 2):S170–S175. 2003. View Article : Google Scholar : PubMed/NCBI | |
Alini M, Eisenstein SM, Ito K, Little C, Kettler AA, Masuda K, Melrose J, Ralphs J, Stokes I and Wilke HJ: Are animal models useful for studying human disc disorders/degeneration? Eur Spine J. 17:2–19. 2008. View Article : Google Scholar : PubMed/NCBI | |
Adams MA and Roughley PJ: What is intervertebral disc degeneration, and what causes it? Spine (Phila Pa 1976). 31:2151–2161. 2006. View Article : Google Scholar : PubMed/NCBI | |
Takatalo J, Karppinen J, Niinimäki J, Taimela S, Näyhä S, Mutanen P, Sequeiros RB, Kyllönen E and Tervonen O: Does lumbar disc degeneration on magnetic resonance imaging associate with low back symptom severity in young Finnish adults? Spine (Phila Pa 1976). 36:2180–2189. 2011. View Article : Google Scholar : PubMed/NCBI | |
Risbud MV and Shapiro IM: Role of cytokines in intervertebral disc degeneration: Pain and disc content. Nat Rev Rheumatol. 10:44–56. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhang C, Chen Z, Meng X, Li M, Zhang L and Huang A: The involvement and possible mechanism of pro-inflammatory tumor necrosis factor alpha (TNF-α) in thoracic ossification of the ligamentum flavum. PLoS One. 12:e01789862017. View Article : Google Scholar : PubMed/NCBI | |
Battié MC, Videman T, Levälahti E, Gill K and Kaprio J: Genetic and environmental effects on disc degeneration by phenotype and spinal level: A multivariate twin study. Spine (Phila Pa 1976). 33:2801–2808. 2008. View Article : Google Scholar : PubMed/NCBI | |
Yee A, Lam MP, Tam V, Chan WC, Chu IK, Cheah KS, Cheung KM and Chan D: Fibrotic-like changes in degenerate human intervertebral discs revealed by quantitative proteomic analysis. Osteoarthritis Cartilage. 24:503–513. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kamita M, Mori T, Sakai Y, Ito S, Gomi M, Miyamoto Y, Harada A, Niida S, Yamada T, Watanabe K and Ono M: Proteomic analysis of ligamentum flavum from patients with lumbar spinal stenosis. Proteomics. 15:1622–1630. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ai C and Kong CL: GPS: A machine learning-based approach integrating multiple gene set analysis tools for better prioritization of biologically relevant pathways. J Genet Genomics. 45:489–504. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wu J, Mao X, Cai T, Luo J and Wei L: KOBAS server: A web-based platform for automated annotation and pathway identification. Nucleic Acids Res. 34:W720–W724. 2006. View Article : Google Scholar : PubMed/NCBI | |
Xie C, Mao X, Huang J, Ding Y, Wu J, Dong S, Kong L, Gao G, Li CY and Wei L: KOBAS 2.0: A web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res. 39:W316–W322. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kudo S, Ono M and Russell WJ: Ossification of thoracic ligamenta flava. AJR Am J Roentgenol. 141:117–121. 1983. View Article : Google Scholar : PubMed/NCBI | |
Hur JW, Kim BJ, Park JH, Kim JH, Park YK, Kwon TH and Moon HJ: The mechanism of ligamentum flavum hypertrophy: Introducing angiogenesis as a critical link that couples mechanical stress and hypertrophy. Neurosurgery. 77:274–282. 2015. View Article : Google Scholar : PubMed/NCBI | |
Misawa H, Ohtsuka K, Nakata K and Kinoshita H: Embryological study of the spinal ligaments in human fetuses. J Spinal Disord. 7:495–498. 1994. View Article : Google Scholar : PubMed/NCBI | |
Nguyen AD, Itoh S, Jeney V, Yanagisawa H, Fujimoto M, Ushio-Fukai M and Fukai T: Fibulin-5 is a novel binding protein for extracellular superoxide dismutase. Circ Res. 95:1067–1074. 2004. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Zhao Y, Gao J, Pawlyk B, Starcher B, Spencer JA, Yanagisawa H, Zuo J and Li T: Elastic fiber homeostasis requires lysyl oxidase-like 1 protein. Nat Genet. 36:178–182. 2004. View Article : Google Scholar : PubMed/NCBI | |
Postacchini F, Gumina S, Cinotti G, Perugia D and DeMartino C: Ligamenta flava in lumbar disc herniation and spinal stenosis. Light and electron microscopic morphology. Spine (Phila Pa 1976). 19:917–922. 1976. View Article : Google Scholar | |
Wang B, Chen Z, Meng X, Li M, Yang X and Zhang C: iTRAQ quantitative proteomic study in patients with thoracic ossification of the ligamentum flavum. Biochem Biophys Res Commun. 487:834–839. 2017. View Article : Google Scholar : PubMed/NCBI | |
Batista MA, Nia HT, Önnerfjord P, Cox KA, Ortiz C, Grodzinsky AJ, Heinegård D and Han L: Nanomechanical phenotype of chondroadherin-null murine articular cartilage. Matrix Biol. 38:84–90. 2014. View Article : Google Scholar : PubMed/NCBI | |
McEwan PA, Scott PG, Bishop PN and Bella J: Structural correlations in the family of small leucine-rich repeat proteins and proteoglycans. J Struct Biol. 155:294–305. 2006. View Article : Google Scholar : PubMed/NCBI | |
Hildebrand A, Romarís M, Rasmussen LM, Heinegård D, Twardzik DR, Border WA and Ruoslahti E: Interaction of the small interstitial proteoglycans biglycan, decorin and fibromodulin with transforming growth factor beta. Biochem J. 302:527–534. 1994. View Article : Google Scholar : PubMed/NCBI | |
Zhang G, Ezura Y, Chervoneva I, Robinson PS, Beason DP, Carine ET, Soslowsky LJ, Iozzo RV and Birk DE: Decorin regulates assembly of collagen fibrils and acquisition of biomechanical properties during tendon development. J Cell Biochem. 98:1436–1449. 2006. View Article : Google Scholar : PubMed/NCBI | |
Seki S, Kawaguchi Y, Chiba K, Mikami Y, Kizawa H, Oya T, Mio F, Mori M, Miyamoto Y, Masuda I, et al: A functional SNP in CILP, encoding cartilage intermediate layer protein, is associated with susceptibility to lumbar disc disease. Nat Genet. 37:607–612. 2005. View Article : Google Scholar : PubMed/NCBI | |
Sairyo K, Biyani A, Goel V, Leaman D, Booth R Jr, Thomas J, Gehling D, Vishnubhotla L, Long R and Ebraheim N: Pathomechanism of ligamentum flavum hypertrophy: A multidisciplinary investigation based on clinical, biomechanical, histologic, and biologic assessments. Spine (Phila Pa 1976). 30:2649–2656. 2005. View Article : Google Scholar : PubMed/NCBI | |
Kelempisioti A, Eskola PJ, Okuloff A, Karjalainen U, Takatalo J, Daavittila I, Niinimäki J, Sequeiros RB, Tervonen O, Solovieva S, et al: Genetic susceptibility of intervertebral disc degeneration among young Finnish adults. BMC Med Genet. 12:1532011. View Article : Google Scholar : PubMed/NCBI | |
Zhou T, Du L, Chen C, Han C, Li X, Qin A, Zhao C, Zhang K and Zhao J: Lysophosphatidic acid induces ligamentum flavum hypertrophy through the LPAR1/Akt pathway. Cell Physiol Biochem. 45:1472–1486. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hara K, Shiga A, Fukutake T, Nozaki H, Miyashita A, Yokoseki A, Kawata H, Koyama A, Arima K, Takahashi T, et al: Association of HTRA1 mutations and familial ischemic cerebral small-vessel disease. N Engl J Med. 360:1729–1739. 2009. View Article : Google Scholar : PubMed/NCBI | |
Tiaden AN and Richards PJ: The emerging roles of HTRA1 in musculoskeletal disease. Am J Pathol. 182:1482–1488. 2013. View Article : Google Scholar : PubMed/NCBI | |
Dewan A, Liu M, Hartman S, Zhang SS, Liu DT, Zhao C, Tam PO, Chan WM, Lam DS, Snyder M, et al: HTRA1 promoter polymorphism in wet age-related macular degeneration. Science. 314:989–992. 2006. View Article : Google Scholar : PubMed/NCBI | |
Tsuchiya A, Yano M, Tocharus J, Kojima H, Fukumoto M, Kawaichi M and Oka C: Expression of mouse HtrA1 serine protease in normal bone and cartilage and its upregulation in joint cartilage damaged by experimental arthritis. Bone. 37:323–336. 2005. View Article : Google Scholar : PubMed/NCBI | |
Grau S, Richards PJ, Kerr B, Hughes C, Caterson B, Williams AS, Junker U, Jones SA, Clausen T and Ehrmann M: The role of human HtrA1 in arthritic disease. J Biol Chem. 281:6124–6129. View Article : Google Scholar : PubMed/NCBI | |
Bogduk N: Functional anatomy of the spine. Handb Clin Neurol. 136:675–688. 2016. View Article : Google Scholar : PubMed/NCBI | |
Feng C, Liu H, Yang M, Zhang Y, Huang B and Zhou Y: Disc cell senescence in intervertebral disc degeneration: Causes and molecular pathways. Cell Cycle. 15:1674–1684. 2016. View Article : Google Scholar : PubMed/NCBI | |
Gruber HE, Hoelscher G, Ingram JA and Hanley EN Jr: Culture of human anulus fibrosus cells on polyamide nanofibers: Extracellular matrix production. Spine (Phila Pa 1976). 34:4–9. 2009. View Article : Google Scholar : PubMed/NCBI | |
Antoniou J, Steffen T, Nelson F, Winterbottom N, Hollander AP, Poole RA, Aebi M and Alini M: The human lumbar intervertebral disc: Evidence for changes in the biosynthesis and denaturation of the extracellular matrix with growth, maturation, ageing, and degeneration. J Clin Invest. 98:996–1003. 1996. View Article : Google Scholar : PubMed/NCBI | |
Johnson WE, Wootton A, El Haj A, Eisenstein SM, Curtis AS and Roberts S: Topographical guidance of intervertebral disc cell growth in vitro: Towards the development of tissue repair strategies for the anulus fibrosus. Eur Spine J. 15 (Suppl 3):S389–S396. 2006. View Article : Google Scholar : PubMed/NCBI | |
Singh K, Masuda K, Thonar EJ, An HS and Cs-Szabo G: Age-related changes in the extracellular matrix of nucleus pulposus and anulus fibrosus of human intervertebral disc. Spine (Phila Pa 1976). 34:10–6. 2009. View Article : Google Scholar : PubMed/NCBI | |
Minogue BM, Richardson SM, Zeef LA, Freemont AJ and Hoyland JA: Transcriptional profiling of bovine intervertebral disc cells: Implications for identification of normal and degenerate human intervertebral disc cell phenotypes. Arthritis Res Ther. 12:R222010. View Article : Google Scholar : PubMed/NCBI | |
Rutges J, Creemers LB, Dhert W, Milz S, Sakai D, Mochida J, Alini M and Grad S: Variations in gene and protein expression in human nucleus pulposus in comparison with annulus fibrosus and cartilage cells: Potential associations with aging and degeneration. Osteoarthritis Cartilage. 18:416–423. 2010. View Article : Google Scholar : PubMed/NCBI | |
Johnson WE, Patterson AM, Eisenstein SM and Roberts S: The presence of pleiotrophin in the human intervertebral disc is associated with increased vascularization: An immunohistologic study. Spine (Phila Pa 1976). 32:1295–1302. 2007. View Article : Google Scholar : PubMed/NCBI | |
Sarath Babu N, Krishnan S, Brahmendra Swamy CV, Venkata Subbaiah GP, Gurava Reddy AV and Idris MM: Quantitative proteomic analysis of normal and degenerated human intervertebral disc. Spine J. 16:989–1000. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hofmann K and Falquet L: A ubiquitin-interacting motif conserved in components of the proteasomal and lysosomal protein degradation systems. Trends Biochem Sci. 26:347–350. 2001. View Article : Google Scholar : PubMed/NCBI | |
Feng P, Scott CW, Cho NH, Nakamura H, Chung YH, Monteiro MJ and Jung JU: Kaposi's sarcoma-associated herpesvirus K7 protein targets a ubiquitin-like/ubiquitin-associated domain-containing protein to promote protein degradation. Mol Cell Biol. 24:3938–3948. 2004. View Article : Google Scholar : PubMed/NCBI | |
Duarri A, Nibbeling E, Fokkens MR, Meijer M, Boddeke E, Lagrange E, Stevanin G, Brice A, Durr A and Verbeek DS: Erratum to: The L450F [Corrected] mutation in KCND3 brings spinocerebellar ataxia and Brugada syndrome closer together. Neurogenetics. 16:2432015. View Article : Google Scholar : PubMed/NCBI | |
Ye D, Liang W, Dai L, Zhou L, Yao Y, Zhong X, Chen H and Xu J: Comparative and quantitative proteomic analysis of normal and degenerated human annulus fibrosus cells. Clin Exp Pharmacol Physiol. 42:530–536. 2015. View Article : Google Scholar : PubMed/NCBI | |
Tsukahara F, Yoshioka T and Muraki T: Molecular and functional characterization of HSC54, a novel variant of human heat-shock cognate protein 70. Mol Pharmacol. 58:1257–1263. 2000. View Article : Google Scholar : PubMed/NCBI | |
Persico MG, Viglietto G, Martini G, Toniolo D, Paonessa G, Moscatelli C, Dono R, Vulliamy T, Luzzatto L and D'Urso M: Isolation of human glucose-6-phosphate dehydrogenase (G6PD) cDNA clones: Primary structure of the protein and unusual 5′non-coding region. Nucleic Acids Res. 14:2511–2522. 1986. View Article : Google Scholar : PubMed/NCBI | |
Feng C, Zhang Y, Yang M, Lan M, Liu H, Huang B and Zhou Y: Oxygen-sensing Nox4 generates genotoxic ROS to induce premature senescence of nucleus pulposus cells through MAPK and NF-κB pathways. Oxid Med Cell Longev. 2017:74264582017. View Article : Google Scholar : PubMed/NCBI | |
Kamboh MI, Barmada MM, Demirci FY, Minster RL, Carrasquillo MM, Pankratz VS, Younkin SG, Saykin AJ; Alzheimer's Disease Neuroimaging Initiative, ; Sweet RA, et al: Genome-wide association analysis of age-at-onset in Alzheimer's disease. Mol Psychiatry. 17:1340–1346. 2012. View Article : Google Scholar : PubMed/NCBI | |
Brown DA and Sihra TS: Presynaptic signaling by heterotrimeric G-proteins. Handb Exp Pharmacol. 207–60. 2008. View Article : Google Scholar : PubMed/NCBI | |
Sajjadi FG and Firestein GS: cDNA cloning and sequence analysis of the human A3 adenosine receptor. Biochim Biophys Acta. 1179:105–107. 1993. View Article : Google Scholar : PubMed/NCBI | |
Salvatore CA, Jacobson MA, Taylor HE, Linden J and Johnson RG: Molecular cloning and characterization of the human A3 adenosine receptor. Proc Natl Acad Sci USA. 90:10365–10369. 1993. View Article : Google Scholar : PubMed/NCBI | |
Honsho M, Asaoku S and Fujiki Y: Posttranslational regulation of fatty acyl-CoA reductase 1, Far1, controls ether glycerophospholipid synthesis. J Biol Chem. 285:8537–8542. 2010. View Article : Google Scholar : PubMed/NCBI | |
Samland AK and Sprenger GA: Transaldolase: From biochemistry to human disease. Int J Biochem Cell Biol. 41:1482–1494. 2009. View Article : Google Scholar : PubMed/NCBI | |
Gauci S, Helbig AO, Slijper M, Krijgsveld J, Heck AJ and Mohammed S: Lys-N and trypsin cover complementary parts of the phosphoproteome in a refined SCX-based approach. Anal Chem. 81:4493–4501. 2009. View Article : Google Scholar : PubMed/NCBI | |
Dickson IR, Happey F, Pearson CH, Naylor A and Turner RL: Variations in the protein components of human intervertebral disk with age. Nature. 215:52–53. 1967. View Article : Google Scholar : PubMed/NCBI | |
Sivan SS, Hayes AJ, Wachtel E, Caterson B, Merkher Y, Maroudas A, Brown S and Roberts S: Biochemical composition and turnover of the extracellular matrix of the normal and degenerate intervertebral disc. Eur Spine J. 23 (Suppl 3):S344–S353. 2014. View Article : Google Scholar : PubMed/NCBI | |
Elliott DM and Setton LA: Anisotropic and inhomogeneous tensile behavior of the human anulus fibrosus: Experimental measurement and material model predictions. J Biomech Eng. 123:256–263. 2001. View Article : Google Scholar : PubMed/NCBI | |
Erwin WM, DeSouza L, Funabashi M, Kawchuk G, Karim MZ, Kim S, Mӓdler S, Matta A, Wang X and Mehrkens KA: The biological basis of degenerative disc disease: Proteomic and biomechanical analysis of the canine intervertebral disc. Arthritis Res Ther. 17:2402015. View Article : Google Scholar : PubMed/NCBI | |
Markolf KL and Morris JM: The structural components of the intervertebral disc. A study of their contributions to the ability of the disc to withstand compressive forces. J Bone Joint Surg Am. 56:675–687. 1974. View Article : Google Scholar : PubMed/NCBI | |
Pettine KA, Murphy MB, Suzuki RK and Sand TT: Percutaneous injection of autologous bone marrow concentrate cells significantly reduces lumbar discogenic pain through 12 months. Stem Cells. 33:146–156. 2015. View Article : Google Scholar : PubMed/NCBI | |
Shu CC, Smith MM, Smith SM, Dart AJ, Little CB and Melrose J: A histopathological scheme for the quantitative scoring of intervertebral disc degeneration and the therapeutic utility of adult mesenchymal stem cells for intervertebral disc regeneration. Int J Mol Sci. 18(pii): E10492017. View Article : Google Scholar : PubMed/NCBI | |
Yang F, Leung VY, Luk KD, Chan D and Cheung KM: Mesenchymal stem cells arrest intervertebral disc degeneration through chondrocytic differentiation and stimulation of endogenous cells. Mol Ther. 17:1959–1966. 2009. View Article : Google Scholar : PubMed/NCBI | |
Meisel HJ, Agarwal N, Hsieh PC, Skelly A, Park JB, Brodke D, Wang JC, Yoon ST and Buser Z: Cell therapy for treatment of intervertebral disc degeneration: A systematic review. Global Spine J. 9 (1 Suppl):39S–52S. 2019. View Article : Google Scholar : PubMed/NCBI | |
Korecki CL, Taboas JM, Tuan RS and Iatridis JC: Notochordal cell conditioned medium stimulates mesenchymal stem cell differentiation toward a young nucleus pulposus phenotype. Stem Cell Res Ther. 1:182010. View Article : Google Scholar : PubMed/NCBI | |
Steck E, Bertram H, Abel R, Chen B, Winter A and Richter W: Induction of intervertebral disc-like cells from adult mesenchymal stem cells. Stem Cells. 23:403–411. 2005. View Article : Google Scholar : PubMed/NCBI | |
Sive JI, Baird P, Jeziorsk M, Watkins A, Hoyland JA and Freemont AJ: Expression of chondrocyte markers by cells of normal and degenerate intervertebral discs. Mol Pathol. 55:91–97. 2002. View Article : Google Scholar : PubMed/NCBI | |
Risbud MV, Di Martino A, Guttapalli A, Seghatoleslami R, Denaro V, Vaccaro AR, Albert TJ and Shapiro IM: Toward an optimum system for intervertebral disc organ culture: TGF-beta 3 enhances nucleus pulposus and anulus fibrosus survival and function through modulation of TGF-beta-R expression and ERK signaling. Spine (Phila Pa 1976). 31:884–890. 2006. View Article : Google Scholar : PubMed/NCBI | |
Purmessur D, Schek RM, Abbott RD, Ballif BA, Godburn KE and Iatridis JC: Notochordal conditioned media from tissue increases proteoglycan accumulation and promotes a healthy nucleus pulposus phenotype in human mesenchymal stem cells. Arthritis Res Ther. 13:R812011. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Xiong C, Kudelko M, Li Y, Wang C, Wong YL, Tam V, Rai MF, Cheverud J, Lawson HA, et al: Early onset disc degeneration in SM/J mice is associated with ion transport systems and fibrotic changes. Matrix Biol. 70:123–139. 2018. View Article : Google Scholar : PubMed/NCBI | |
Tam V, Chan WCW, Leung VYL, Cheah KSE, Cheung KMC, Sakai D, McCann MR, Bedore J, Séguin CA and Chan D: Histological and reference system for the analysis of mouse intervertebral disc. J Orthop Res. 36:233–243. 2018.PubMed/NCBI | |
Donnally IC, Hanna A and Varacallo M: Lumbar degenerative disk disease, in StatPearls. StatPearls Publishing. StatPearls Publishing LLC.; Treasure Island (FL): 2019 | |
Liu XD, Zeng BF, Xu JG, Zhu HB and Xia QC: Proteomic analysis of the cerebrospinal fluid of patients with lumbar disk herniation. Proteomics. 6:1019–1028. 2006. View Article : Google Scholar : PubMed/NCBI | |
Xie P, Liu B, Chen R, Yang B, Dong J and Rong L: Comparative analysis of serum proteomes: Identification of proteins associated with sciatica due to lumbar intervertebral disc herniation. Biomed Rep. 2:693–698. 2014. View Article : Google Scholar : PubMed/NCBI | |
Horrevoets AJ, Fontijn RD, van Zonneveld AJ, de Vries CJ, ten Cate JW and Pannekoek H: Vascular endothelial genes that are responsive to tumor necrosis factor-alpha in vitro are expressed in atherosclerotic lesions, including inhibitor of apoptosis protein-1, stannin, and two novel genes. Blood. 93:3418–3431. 1999. View Article : Google Scholar : PubMed/NCBI | |
Murata Y, Nannmark U, Rydevik B, Takahashi K and Olmarker K: The role of tumor necrosis factor-alpha in apoptosis of dorsal root ganglion cells induced by herniated nucleus pulposus in rats. Spine (Phila Pa 1976). 33:155–162. 2008. View Article : Google Scholar : PubMed/NCBI | |
Luo G, Zhang X, Nilsson-Ehle P and Xu N: Apolipoprotein M. Lipids Health Dis. 3:212004. View Article : Google Scholar : PubMed/NCBI | |
Palomo T, Vilaca T and Lazaretti-Castro M: Osteogenesis imperfecta: Diagnosis and treatment. Curr Opin Endocrinol Diabetes Obes. 24:381–388. 2017. View Article : Google Scholar : PubMed/NCBI | |
Deng H, Huang X and Yuan L: Molecular genetics of the COL2A1-related disorders. Mutat Res Rev Mutat Res. 768:1–13. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zollinger AJ and Smith ML: Fibronectin, the extracellular glue. Matrix Biol. 60-61:27–37. 2017. View Article : Google Scholar : PubMed/NCBI | |
Oegema TR Jr, Johnson SL, Aguiar DJ and Ogilvie JW: Fibronectin and its fragments increase with degeneration in the human intervertebral disc. Spine (Phila Pa 1976). 25:2742–2747. 2000. View Article : Google Scholar : PubMed/NCBI | |
Kook SH, Lim SS, Cho ES, Lee YH, Han SK, Lee KY, Kwon J, Hwang JW, Bae CH, Seo YK and Lee JC: COMP-angiopoietin 1 increases proliferation, differentiation, and migration of stem-like cells through Tie-2-mediated activation of p38 MAPK and PI3K/Akt signal transduction pathways. Biochem Biophys Res Commun. 455:371–377. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhang Q, Ji Q, Wang X, Kang L, Fu Y, Yin Y, Li Z, Liu Y, Xu X and Wang Y: SOX9 is a regulator of ADAMTSs-induced cartilage degeneration at the early stage of human osteoarthritis. Osteoarthritis Cartilage. 23:2259–2268. 2015. View Article : Google Scholar : PubMed/NCBI | |
Mo S, Liu C, Chen L, Ma Y, Liang T, Xue J, Zeng H and Zhan X: KEGG-expressed genes and pathways in intervertebral disc degeneration: Protocol for a systematic review and data mining. Medicine (Baltimore). 98:e157962019. View Article : Google Scholar : PubMed/NCBI | |
Ouyang ZH, Wang WJ, Yan YG, Wang B and Lv GH: The PI3K/Akt pathway: A critical player in intervertebral disc degeneration. Oncotarget. 8:57870–57881. 2017. View Article : Google Scholar : PubMed/NCBI | |
Tan Y, Yao X, Dai Z, Wang Y and Lv G: Bone morphogenetic protein 2 alleviated intervertebral disc degeneration through mediating the degradation of ECM and apoptosis of nucleus pulposus cells via the PI3K/Akt pathway. Int J Mol Med. 43:583–592. 2019.PubMed/NCBI | |
Zochodne DW: Mechanisms of diabetic neuron damage: Molecular pathways. Handb Clin Neurol. 126:379–399. 2014. View Article : Google Scholar : PubMed/NCBI | |
Russo F, Ambrosio L, Ngo K, Vadalà G, Denaro V, Fan Y, Sowa G, Kang JD and Vo N: The role of type I diabetes in intervertebral disc degeneration. Spine (Phila Pa 1976). 44:1177–1185. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ma X, Han J, Wu Q, Liu H, Shi S, Wang C, Wang Y, Xiao J, Zhao J, Jiang J and Wan C: Involvement of dysregulated Wip1 in manganese-induced p53 signaling and neuronal apoptosis. Toxicol Lett. 235:17–27. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ben-Porath I and Weinberg RA: The signals and pathways activating cellular senescence. Int J Biochem Cell Biol. 37:961–976. 2005. View Article : Google Scholar : PubMed/NCBI | |
Muller M: Cellular senescence: Molecular mechanisms, in vivo significance, and redox considerations. Antioxid Redox Signal. 11:59–98. 2009. View Article : Google Scholar : PubMed/NCBI | |
Jin LZ, Lu JS and Gao JW: Silencing SUMO2 promotes protection against degradation and apoptosis of nucleus pulposus cells through p53 signaling pathway in intervertebral disc degeneration. Biosci Rep. 38(pii): BSR201715232018. View Article : Google Scholar : PubMed/NCBI | |
Massagué J: TGFβ signalling in context. Nat Rev Mol Cell Biol. 13:616–630. 2012. View Article : Google Scholar : PubMed/NCBI | |
Chen G, Deng C and Li YP: TGF-β and BMP signaling in osteoblast differentiation and bone formation. Int J Biol Sci. 8:272–288. 2012. View Article : Google Scholar : PubMed/NCBI | |
Cao C, Zou J, Liu X, Shapiro A, Moral M, Luo Z, Shi Q, Liu J, Yang H and Ebraheim N: Bone marrow mesenchymal stem cells slow intervertebral disc degeneration through the NF-κB pathway. Spine J. 15:530–538. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lu L, Hu J, Wu Q, An Y, Cui W, Wang J and Ye Z: Berberine prevents human nucleus pulposus cells from IL1betainduced extracellular matrix degradation and apoptosis by inhibiting the NFkappaB pathway. Int J Mol Med. 43:1679–1686. 2019.PubMed/NCBI | |
Zieba J, Forlenza KN, Khatra JS, Sarukhanov A, Duran I, Rigueur D, Lyons KM, Cohn DH, Merrill AE and Krakow D: TGFβ and BMP dependent cell fate changes due to loss of filamin b produces disc degeneration and progressive vertebral fusions. PLoS Genet. 12:e10059362016. View Article : Google Scholar : PubMed/NCBI | |
Yang H, Cao C, Wu C, Yuan C, Gu Q, Shi Q and Zou J: TGF-βl suppresses inflammation in cell therapy for intervertebral disc degeneration. Sci Rep. 5:132542015. View Article : Google Scholar : PubMed/NCBI | |
Posey KL, Coustry F and Hecht JT: Cartilage oligomeric matrix protein: COMPopathies and beyond. Matrix Biol. 71-72:161–173. 2018. View Article : Google Scholar : PubMed/NCBI |