1
|
Huret JL, Dessen P and Bernheim A: An
atlas of chromosomes in hematological malignancies. Example: 11q23
and MLL partners. Leukemia. 15:987–989. 2001. View Article : Google Scholar : PubMed/NCBI
|
2
|
Biondi A, Cimino G, Pieters R and Pui CH:
Biological and therapeutic aspects of infant leukemia. Blood.
96:24–33. 2000. View Article : Google Scholar : PubMed/NCBI
|
3
|
Sabattini E, Bacci F, Sagramoso C and
Pileri SA: WHO classification of tumours of haematopoietic and
lymphoid tissues in 2008: An overview. Pathologica. 102:83–87.
2010.PubMed/NCBI
|
4
|
Marschalek R: Mixed lineage leukemia:
Roles in human malignancies and potential therapy. FEBS J.
277:1822–1831. 2010. View Article : Google Scholar : PubMed/NCBI
|
5
|
Andersson AK, Ma J, Wang J, Chen X, Gedman
AL, Dang J, Nakitandwe J, Holmfeldt L, Parker M, Easton J, et al:
The landscape of somatic mutations in infant MLL-rearranged acute
lymphoblastic leukemias. Nat Genet. 47:330–337. 2015. View Article : Google Scholar : PubMed/NCBI
|
6
|
Biswas D, Milne TA, Basrur V, Kim J,
Elenitoba-Johnson KS, Allis CD and Roeder RG: Function of
leukemogenic mixed lineage leukemia 1 (MLL) fusion proteins through
distinct partner protein complexes. Proc Natl Acad Sci USA.
108:15751–15756. 2011. View Article : Google Scholar : PubMed/NCBI
|
7
|
Prange KHM, Mandoli A, Kuznetsova T, Wang
SY, Sotoca AM, Marneth AE, van der Reijden BA, Stunnenberg HG and
Martens JHA: MLL-AF9 and MLL-AF4 oncofusion proteins bind a
distinct enhancer repertoire and target the RUNX1 program in 11q23
acute myeloid leukemia. Oncogene. 36:3346–3356. 2017. View Article : Google Scholar : PubMed/NCBI
|
8
|
Ji H, Li X, Wang QF and Ning Y:
Differential principal component analysis of ChIP-seq. Proc Natl
Acad Sci USA. 110:6789–6794. 2013. View Article : Google Scholar : PubMed/NCBI
|
9
|
Kim D, Langmead B and Salzberg SL: HISAT:
A fast spliced aligner with low memory requirements. Nat Methods.
12:357–360. 2015. View Article : Google Scholar : PubMed/NCBI
|
10
|
Anders S, Pyl PT and Huber W: HTSeq--a
python framework to work with high-throughput sequencing data.
Bioinformatics. 31:166–169. 2015. View Article : Google Scholar : PubMed/NCBI
|
11
|
Trapnell C, Roberts A, Goff L, Pertea G,
Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL and Pachter L:
Differential gene and transcript expression analysis of RNA-seq
experiments with tophat and cufflinks. Nat Protoc. 7:562–578. 2012.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Love MI, Huber W and Anders S: Moderated
estimation of fold change and dispersion for RNA-seq data with
DESeq2. Genome Biol. 15:5502014. View Article : Google Scholar : PubMed/NCBI
|
13
|
Dennis G Jr, Sherman BT, Hosack DA, Yang
J, Gao W, Lane HC and Lempicki RA: DAVID: Database for annotation,
visualization, and integrated discovery. Genome Biol. 4:P32003.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Chen Y, Meyer CA, Liu T, Li W, Liu JS and
Liu XS: MM-ChIP enables integrative analysis of cross-platform and
between-laboratory ChIP-chip or ChIP-seq data. Genome Biol.
12:R112011. View Article : Google Scholar : PubMed/NCBI
|
15
|
Heinz S, Benner C, Spann N, Bertolino E,
Lin YC, Laslo P, Cheng JX, Murre C, Singh H and Glass CK: Simple
combinations of lineage-determining transcription factors prime
cis-regulatory elements required for macrophage and B cell
identities. Mol Cell. 38:576–589. 2010. View Article : Google Scholar : PubMed/NCBI
|
16
|
Somervaille TC and Cleary ML:
Identification and characterization of leukemia stem cells in
murine MLL-AF9 acute myeloid leukemia. Cancer Cell. 10:257–268.
2006. View Article : Google Scholar : PubMed/NCBI
|
17
|
Saito Y, Chapple RH, Lin A, Kitano A and
Nakada D: AMPK protects leukemia-initiating cells in myeloid
leukemias from metabolic stress in the bone marrow. Cell Stem Cell.
17:585–596. 2015. View Article : Google Scholar : PubMed/NCBI
|
18
|
Naviaux RK, Costanzi E, Haas M and Verma
IM: The pCL vector system: Rapid production of helper-free,
high-titer, recombinant retroviruses. J Virol. 70:5701–5705.
1996.PubMed/NCBI
|
19
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Dohner H, Weisdorf DJ and Bloomfield CD:
Acute myeloid leukemia. N Engl J Med. 373:1136–1152. 2015.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Muntean AG and Hess JL: The pathogenesis
of mixed-lineage leukemia. Ann Rev Pathol. 7:283–301. 2012.
View Article : Google Scholar
|
22
|
Bernt KM, Zhu N, Sinha AU, Vempati S,
Faber J, Krivtsov AV, Feng Z, Punt N, Daigle A, Bullinger L, et al:
MLL-rearranged leukemia is dependent on aberrant H3K79 methylation
by DOT1L. Cancer Cell. 20:66–78. 2011. View Article : Google Scholar : PubMed/NCBI
|
23
|
Marneth AE, Prange KHM, Al Hinai ASA,
Bergevoet SM, Tesi N, Janssen-Megens EM, Kim B, Sharifi N, Yaspo
ML, Kuster J, et al: C-terminal BRE overexpression in
11q23-rearranged and t(8;16) acute myeloid leukemia is caused by
intragenic transcription initiation. Leukemia. 32:828–836. 2018.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Miller PG, Al-Shahrour F, Hartwell KA, Chu
LP, Järås M, Puram RV, Puissant A, Callahan KP, Ashton J, McConkey
ME, et al: In vivo RNAi screening identifies a leukemia-specific
dependence on integrin beta 3 signaling. Cancer Cell. 24:45–58.
2013. View Article : Google Scholar : PubMed/NCBI
|
25
|
Reikvam H, Brenner AK, Hagen KM, Liseth K,
Skrede S, Hatfield KJ and Bruserud Ø: The cytokine-mediated
crosstalk between primary human acute myeloid cells and mesenchymal
stem cells alters the local cytokine network and the global gene
expression profile of the mesenchymal cells. Stem Cell Res.
15:530–541. 2015. View Article : Google Scholar : PubMed/NCBI
|
26
|
Cilloni D, Martinelli G, Messa F,
Baccarani M and Saglio G: Nuclear factor kB as a target for new
drug development in myeloid malignancies. Haematologica.
92:1224–1229. 2007. View Article : Google Scholar : PubMed/NCBI
|
27
|
Kagoya Y, Yoshimi A, Kataoka K, Nakagawa
M, Kumano K, Arai S, Kobayashi H, Saito T, Iwakura Y and Kurokawa
M: Positive feedback between NF-κB and TNF-α promotes
leukemia-initiating cell capacity. J Clin Invest. 124:528–542.
2014. View Article : Google Scholar : PubMed/NCBI
|
28
|
Wang QF, Wu G, Mi S, He F, Wu J, Dong J,
Luo RT, Mattison R, Kaberlein JJ, Prabhakar S, et al: MLL fusion
proteins preferentially regulate a subset of wild-type MLL target
genes in the leukemic genome. Blood. 117:6895–6905. 2011.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Chen L, Sun Y, Wang J, Jiang H and Muntean
AG: Differential regulation of the c-Myc/Lin28 axis discriminates
subclasses of rearranged MLL leukemia. Oncotarget. 7:25208–25223.
2016.PubMed/NCBI
|
30
|
Armstrong SA, Staunton JE, Silverman LB,
Pieters R, den Boer ML, Minden MD, Sallan SE, Lander ES, Golub TR
and Korsmeyer SJ: MLL translocations specify a distinct gene
expression profile that distinguishes a unique leukemia. Nat Genet.
30:41–47. 2002. View
Article : Google Scholar : PubMed/NCBI
|
31
|
Milne TA, Martin ME, Brock HW, Slany RK
and Hess JL: Leukemogenic MLL fusion proteins bind across a broad
region of the Hox a9 locus, promoting transcription and multiple
histone modifications. Cancer Res. 65:11367–11374. 2005. View Article : Google Scholar : PubMed/NCBI
|
32
|
Kawagoe H, Humphries RK, Blair A,
Sutherland HJ and Hogge DE: Expression of HOX genes, HOX cofactors,
and MLL in phenotypically and functionally defined subpopulations
of leukemic and normal human hematopoietic cells. Leukemia.
13:687–698. 1999. View Article : Google Scholar : PubMed/NCBI
|
33
|
Li Z, Chen P, Su R, Hu C, Li Y, Elkahloun
AG, Zuo Z, Gurbuxani S, Arnovitz S, Weng H, et al: PBX3 and MEIS1
cooperate in hematopoietic cells to drive acute myeloid leukemias
characterized by a core transcriptome of the MLL-Rearranged
disease. Cancer Res. 76:619–629. 2016. View Article : Google Scholar : PubMed/NCBI
|
34
|
Guo H, Chu Y, Wang L, Chen X, Chen Y,
Cheng H, Zhang L, Zhou Y, Yang FC, Cheng T, et al: PBX3 is
essential for leukemia stem cell maintenance in MLL-rearranged
leukemia. Int J Cancer. 141:324–335. 2017. View Article : Google Scholar : PubMed/NCBI
|
35
|
Vakana E, Arslan AD, Szilard A, Altman JK
and Platanias LC: Regulatory effects of sestrin 3 (SESN3) in
BCR-ABL expressing cells. PLoS One. 8:e787802013. View Article : Google Scholar : PubMed/NCBI
|
36
|
Ghosh J, Kobayashi M, Ramdas B, Chatterjee
A, Ma P, Mali RS, Carlesso N, Liu Y, Plas DR, Chan RJ and Kapur R:
S6K1 regulates hematopoietic stem cell self-renewal and leukemia
maintenance. J Clin Invest. 126:2621–2625. 2016. View Article : Google Scholar : PubMed/NCBI
|
37
|
Yoo HJ, Byun HJ, Kim BR, Lee KH, Park SY
and Rho SB: DAPk1 inhibits NF-κB activation through TNF-α and
INF-γ-induced apoptosis. Cell Signal. 24:1471–1477. 2012.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Shanmugam R, Gade P, Wilson-Weekes A,
Sayar H, Suvannasankha A, Goswami C, Li L, Gupta S, Cardoso AA,
Baghdadi TA, et al: A noncanonical Flt3ITD/NF-κB signaling pathway
represses DAPK1 in acute myeloid leukemia. Clin Cancer Res.
18:360–369. 2012. View Article : Google Scholar : PubMed/NCBI
|
39
|
Chen Y, Hui H, Yang H, Zhao K, Qin Y, Gu
C, Wang X, Lu N and Guo Q: Wogonoside induces cell cycle arrest and
differentiation by affecting expression and subcellular
localization of PLSCR1 in AML cells. Blood. 121:3682–3691. 2013.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Huang Y, Zhao Q, Zhou CX, Gu ZM, Li D, Xu
HZ, Wiedmer T, Sims PJ, Zhao KW and Chen GQ: Antileukemic roles of
human phospholipid scramblase 1 gene, evidence from inducible
PLSCR1-expressing leukemic cells. Oncogene. 25:6618–6627. 2006.
View Article : Google Scholar : PubMed/NCBI
|