1
|
Steegers EA, von Dadelszen P, Duvekot JJ
and Pijnenborg R: Pre-eclampsia. Lancet. 376:631–644. 2010.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Anderson UD, Olsson MG, Kristensen KH,
Akerstrom B and Hansson SR: Review: Biochemical markers to predict
preeclampsia. Placenta. 33 (Suppl):S42–S47. 2012. View Article : Google Scholar : PubMed/NCBI
|
3
|
Matsuo K, Kooshesh S, Dinc M, Sun CC,
Kimura T and Baschat AA: Late postpartum eclampsia: Report of two
cases managed by uterine curettage and review of the literature. Am
J Perinatol. 24:257–266. 2007. View Article : Google Scholar : PubMed/NCBI
|
4
|
Powe CE, Levine RJ and Karumanchi SA:
Preeclampsia, a disease of the maternal endothelium: The role of
antiangiogenic factors and implications for later cardiovascular
disease. Circulation. 123:2856–2869. 2011. View Article : Google Scholar : PubMed/NCBI
|
5
|
Bartel DP: MicroRNAs: Genomics,
biogenesis, mechanism, and function. Cell. 116:281–297. 2004.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Mendell JT and Olson EN: MicroRNAs in
stress signaling and human disease. Cell. 148:1172–1187. 2012.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Mayor-Lynn K, Toloubeydokhti T, Cruz AC
and Chegini N: Expression profile of microRNAs and mRNAs in human
placentas from pregnancies complicated by preeclampsia and preterm
labor. Reprod Sci. 18:46–56. 2011. View Article : Google Scholar : PubMed/NCBI
|
8
|
Choi SY, Yun J, Lee OJ, Han HS, Yeo MK,
Lee MA and Suh KS: MicroRNA expression profiles in placenta with
severe preeclampsia using a PNA-based microarray. Placenta.
34:799–804. 2013. View Article : Google Scholar : PubMed/NCBI
|
9
|
Hu Y, Li P, Hao S, Liu L, Zhao J and Hou
Y: Differential expression of microRNAs in the placentae of Chinese
patients with severe pre-eclampsia. Clin Chem Lab Med. 47:923–929.
2009. View Article : Google Scholar : PubMed/NCBI
|
10
|
Chen DB and Wang W: Human placental
microRNAs and preeclampsia. Biol Reprod. 88:1302013. View Article : Google Scholar : PubMed/NCBI
|
11
|
Hayder H, O'Brien J, Nadeem U and Peng C:
MicroRNAs: Crucial regulators of placental development.
Reproduction. 155:R259–R271. 2018. View Article : Google Scholar : PubMed/NCBI
|
12
|
Jiang F, Li J, Wu G, Miao Z, Lu L, Ren G
and Wang X: Upregulation of microRNA335 and microRNA584 contributes
to the pathogenesis of severe preeclampsia through downregulation
of endothelial nitric oxide synthase. Mol Med Rep. 12:5383–5390.
2015. View Article : Google Scholar : PubMed/NCBI
|
13
|
Walz JM, Wecker T, Zhang PP, Cakir B,
Gruening B, Agostini H, Reuer T, Ludwig F, Boneva S, Faerber L, et
al: Impact of angiogenic activation and inhibition on miRNA
profiles of human retinal endothelial cells. Exp Eye Res.
181:98–104. 2019. View Article : Google Scholar : PubMed/NCBI
|
14
|
Ertekin S, Yildirim O, Dinc E, Ayaz L,
Fidanci SB and Tamer L: Evaluation of circulating miRNAs in wet
age-related macular degeneration. Mol Vis. 20:1057–1066.
2014.PubMed/NCBI
|
15
|
Luo LJ, Wang DD, Wang J, Yang F and Tang
JH: Diverse roles of miR-335 in development and progression of
cancers. Tumour Biol. Oct 8–2016.(Epub ahead of print). View Article : Google Scholar
|
16
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Ji L, Brkic J, Liu M, Fu G, Peng C and
Wang YL: Placental trophoblast cell differentiation: Physiological
regulation and pathological relevance to preeclampsia. Mol Aspects
Med. 34:981–1023. 2013. View Article : Google Scholar : PubMed/NCBI
|
18
|
Kokkinos MI, Murthi P, Wafai R, Thompson
EW and Newgreen DF: Cadherins in the human
placenta-epithelial-mesenchymal transition (EMT) and placental
development. Placenta. 31:747–755. 2010. View Article : Google Scholar : PubMed/NCBI
|
19
|
Jungert K, Buck A, von Wichert G, König A,
Buchholz M, Gress TM and Ellenrieder V: Sp1 is required for
transforming growth factor-beta-induced mesenchymal transition and
migration in pancreatic cancer cells. Cancer Res. 67:1563–1570.
2007. View Article : Google Scholar : PubMed/NCBI
|
20
|
Peng M, Hu Y, Song W, Duan S, Xu Q, Ding
Y, Geng J and Zhou J: MIER3 suppresses colorectal cancer
progression by down-regulating Sp1, inhibiting
epithelial-mesenchymal transition. Sci Rep. 7:110002017. View Article : Google Scholar : PubMed/NCBI
|
21
|
Xu Y, Zhao F, Wang Z, Song Y, Luo Y, Zhang
X, Jiang L, Sun Z, Miao Z and Xu H: MicroRNA-335 acts as a
metastasis suppressor in gastric cancer by targeting Bcl-w and
specificity protein 1. Oncogene. 31:1398–1407. 2012. View Article : Google Scholar : PubMed/NCBI
|
22
|
He J and Jiang BH: Interplay between
reactive oxygen species and MicroRNAs in Cancer. Curr Pharmacol
Rep. 2:82–90. 2016. View Article : Google Scholar : PubMed/NCBI
|
23
|
Bao B, Azmi A, Li Y, Ahmad A, Ali S,
Banerjee S, Kong D and Sarkar FH: Targeting CSCs in tumor
microenvironment: The potential role of ROS-associated miRNAs in
tumor aggressiveness. Curr Stem Cell Res Ther. 9:22–35. 2014.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Magenta A, Cencioni C, Fasanaro P,
Zaccagnini G, Greco S, Sarra-Ferraris G, Antonini A, Martelli F and
Capogrossi MC: miR-200c is upregulated by oxidative stress and
induces endothelial cell apoptosis and senescence via ZEB1
inhibition. Cell Death Differ. 18:1628–1639. 2011. View Article : Google Scholar : PubMed/NCBI
|
25
|
Qiao J, Lee S, Paul P, Theiss L, Tiao J,
Qiao L, Kong A and Chung DH: miR-335 and miR-363 regulation of
neuroblastoma tumorigenesis and metastasis. Surgery. 154:226–233.
2013. View Article : Google Scholar : PubMed/NCBI
|
26
|
Yao L, Li M, Hu J, Wang W and Gao M:
MiRNA-335-5p negatively regulates granulosa cell proliferation via
SGK3 in PCOS. Reproduction. 2018.(Epub ahead of print). View Article : Google Scholar :
|
27
|
Wang J, Wang X, Liu F and Fu Y:
microRNA-335 inhibits colorectal cancer HCT116 cells growth and
epithelial-mesenchymal transition (EMT) process by targeting
Twist1. Pharmazie. 72:475–481. 2017.PubMed/NCBI
|
28
|
Zhou XM, Sun R, Luo DH, Sun J, Zhang MY,
Wang MH, Yang Y, Wang HY and Mai SJ: Upregulated TRIM29 promotes
proliferation and metastasis of nasopharyngeal carcinoma via
PTEN/AKT/mTOR signal pathway. Oncotarget. 7:13634–13650.
2016.PubMed/NCBI
|
29
|
DaSilva-Arnold S, James JL, Al-Khan A,
Zamudio S and Illsley NP: Differentiation of first trimester
cytotrophoblast to extravillous trophoblast involves an
epithelial-mesenchymal transition. Placenta. 36:1412–1418. 2015.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Li XL, Dong X, Xue Y, Li CF, Gou WL and
Chen Q: Increased expression levels of E-cadherin, cytokeratin 18
and 19 observed in preeclampsia were not correlated with disease
severity. Placenta. 35:625–631. 2014. View Article : Google Scholar : PubMed/NCBI
|
31
|
Du L, Kuang L, He F, Tang W, Sun W and
Chen D: Mesenchymal-to-epithelial transition in the placental
tissues of patients with preeclampsia. Hypertens Res. 40:67–72.
2017. View Article : Google Scholar : PubMed/NCBI
|
32
|
Fedorova L, Gatto-Weis C, Smaili S,
Khurshid N, Shapiro JI, Malhotra D and Horrigan T: Down-regulation
of the transcription factor snail in the placentas of patients with
preeclampsia and in a rat model of preeclampsia. Reprod Biol
Endocrinol. 10:152012. View Article : Google Scholar : PubMed/NCBI
|
33
|
Lee MS, Byun HJ, Lee J, Jeoung DI, Kim YM
and Lee H: Tetraspanin CD82 represses Sp1-mediated Snail expression
and the resultant E-cadherin expression interrupts nuclear
signaling of β-catenin by increasing its membrane localization.
Cell Signal. 52:83–94. 2018. View Article : Google Scholar : PubMed/NCBI
|
34
|
He P, Chen Z, Sun Q, Li Y, Gu H and Ni X:
Reduced expression of 11β-hydroxysteroid dehydrogenase type 2 in
preeclamptic placentas is associated with decreased PPARgamma but
increased PPARalpha expression. Endocrinology. 155:299–309. 2014.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Wu F, Tian FJ, Lin Y and Xu WM: Oxidative
Stress: Placenta function and dysfunction. Am J Reprod Immunol.
76:258–271. 2016. View Article : Google Scholar : PubMed/NCBI
|
36
|
Aouache R, Biquard L, Vaiman D and
Miralles F: Oxidative stress in preeclampsia and placental
diseases. Int J Mol Sci. 19:14962018. View Article : Google Scholar :
|
37
|
Rudov A, Balduini W, Carloni S, Perrone S,
Buonocore G and Albertini MC: Involvement of miRNAs in placental
alterations mediated by oxidative stress. Oxid Med Cell Longev.
2014:1030682014. View Article : Google Scholar : PubMed/NCBI
|
38
|
Cross CE, Tolba MF, Rondelli CM, Xu M and
Abdel-Rahman SZ: Oxidative stress alters miRNA and gene expression
profiles in villous first trimester trophoblasts. Biomed Res Int.
2015:2570902015. View Article : Google Scholar : PubMed/NCBI
|
39
|
Liu B, Chen Y and St Clair DK: ROS and
p53: A versatile partnership. Free Radic Biol Med. 44:1529–1535.
2008. View Article : Google Scholar : PubMed/NCBI
|
40
|
Scarola M, Schoeftner S, Schneider C and
Benetti R: miR-335 directly targets Rb1 (pRb/p105) in a proximal
connection to p53-dependent stress response. Cancer Res.
70:6925–6933. 2010. View Article : Google Scholar : PubMed/NCBI
|
41
|
Sharp AN, Heazell AE, Baczyk D, Dunk CE,
Lacey HA, Jones CJ, Perkins JE, Kingdom JC, Baker PN and Crocker
IP: Preeclampsia is associated with alterations in the p53-pathway
in villous trophoblast. PLoS One. 9:e876212014. View Article : Google Scholar : PubMed/NCBI
|
42
|
Monteiro LJ, Cubillos S, Sanchez M,
Acuña-Gallardo S, Venegas P, Herrera V, Lam EW, Varas-Godoy M and
Illanes SE: Reduced FOXM1 expression limits trophoblast migration
and angiogenesis and is associated with preeclampsia. Reprod Sci.
26:580–590. 2019. View Article : Google Scholar : PubMed/NCBI
|
43
|
Niu ZR, Han T, Sun XL, Luan LX, Gou WL and
Zhu XM: MicroRNA-30a-3p is overexpressed in the placentas of
patients with preeclampsia and affects trophoblast invasion and
apoptosis by its effects on IGF-1. Am J Obstet Gynecol.
218:249.e1–249.e12. 2018. View Article : Google Scholar
|