1
|
Basu-Roy U, Basilico C and Mansukhani A:
Perspectives on cancer stem cells in osteosarcoma. Cancer Lett.
338:158–167. 2013. View Article : Google Scholar : PubMed/NCBI
|
2
|
Marina N, Gebhardt M, Teot L and Gorlick
R: Biology and therapeutic advances for pediatric osteosarcoma.
Oncologist. 9:422–441. 2004. View Article : Google Scholar : PubMed/NCBI
|
3
|
Hardeland R, Cardinali DP, Srinivasan V,
Spence DW, Brown GM and Pandi-Perumal SR: Melatonin-a pleiotropic,
orchestrating regulator molecule. Prog Neurobiol. 93:350–384. 2011.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Fernández Vázquez G, Reiter RJ and Agil A:
Melatonin increases brown adipose tissue mass and function in
Zücker diabetic fatty rats: Implications for obesity control. J
Pineal Res. 64:e124722018. View Article : Google Scholar : PubMed/NCBI
|
5
|
Karamitri A and Jockers R: Melatonin in
type 2 diabetes mellitus and obesity. Nat Rev Endocrinol.
15:105–125. 2019. View Article : Google Scholar : PubMed/NCBI
|
6
|
Haeger P, Bouchet A, Ossandon C and Bresky
G: Treatment with melatonin improves cognitive behavior and motor
skills in a rat model of liver fibrosis. Ann Hepatol. 18:101–108.
2019. View Article : Google Scholar : PubMed/NCBI
|
7
|
Li Y, Li S, Zhou Y, Meng X, Zhang JJ, Xu
DP and Li HB: Melatonin for the prevention and treatment of cancer.
Oncotarget. 8:39896–39921. 2017.PubMed/NCBI
|
8
|
Parkin DM: International variation.
Oncogene. 23:6329–6340. 2004. View Article : Google Scholar : PubMed/NCBI
|
9
|
Jablonska K, Pula B, Zemla A, Kobierzycki
C, Kedzia W, Nowak-Markwitz E, Spaczynski M, Zabel M,
Podhorska-Okolow M and Dziegiel P: Expression of the MT1 melatonin
receptor in ovarian cancer cells. Int J Mol Sci. 15:23074–23089.
2014. View Article : Google Scholar : PubMed/NCBI
|
10
|
Reiter RJ, Rosales-Corral SA, Tan DX,
Acuna-Castroviejo D, Qin L, Yang SF and Xu K: Melatonin, a full
service anti-cancer agent: Inhibition of initiation, progression
and metastasis. Int J Mol Sci. 18(pii): E8432017. View Article : Google Scholar : PubMed/NCBI
|
11
|
Menéndez-Menéndez J, Hermida-Prado F,
Granda-Díaz R, González A, García-Pedrero JM, Del-Río-Ibisate N,
González-González A, Cos S, Alonso-González C and Martínez-Campa C:
Deciphering the molecular basis of melatonin protective effects on
breast cells treated with doxorubicin: TWIST1 a transcription
factor involved in EMT and metastasis, a novel target of melatonin.
Cancers (Basel). 11(pii): E10112019. View Article : Google Scholar : PubMed/NCBI
|
12
|
Mao L, Dauchy RT, Blask DE, Slakey LM,
Xiang S, Yuan L, Dauchy EM, Shan B, Brainard GC, Hanifin JP, et al:
Circadian gating of epithelial-to-mesenchymal transition in breast
cancer cells via melatonin-regulation of GSK3β. Mol Endocrinol.
26:1808–1820. 2012. View Article : Google Scholar : PubMed/NCBI
|
13
|
Seba V, Silva G, Santos MBD, Baek SJ,
França SC, Fachin AL, Regasini LO and Marins M: Chalcone
derivatives 4′-amino-1-naphthyl-chalcone (D14) and
4′-amino-4-methyl-1-naphthyl-chalcone (D15) suppress migration and
invasion of osteosarcoma cells mediated by p53 regulating
EMT-related genes. Int J Mol Sci. 19(pii): E28382018. View Article : Google Scholar : PubMed/NCBI
|
14
|
Suzuki S, Toyoma S, Tsuji T, Kawasaki Y
and Yamada T: CD147 mediates transforming growth factor-β1-induced
epithelial-mesenchymal transition and cell invasion in squamous
cell carcinoma of the tongue. Exp Ther Med. 17:2855–2860.
2019.PubMed/NCBI
|
15
|
Li L, Qi L, Liang Z, Song W, Liu Y, Wang
Y, Sun B, Zhang B and Cao W: Transforming growth factor-β1 induces
EMT by the transactivation of epidermal growth factor signaling
through HA/CD44 in lung and breast cancer cells. Int J Mol Med.
36:113–122. 2015. View Article : Google Scholar : PubMed/NCBI
|
16
|
Gonçalves Ndo N, Colombo J, Lopes JR,
Gelaleti GB, Moschetta MG, Sonehara NM, Hellmén E, Zanon Cde F,
Oliani SM and Zuccari DA: Effect of melatonin in epithelial
mesenchymal transition markers and invasive properties of breast
cancer stem cells of canine and human cell lines. PLoS One.
11:e01504072016. View Article : Google Scholar : PubMed/NCBI
|
17
|
Moirangthem A, Bondhopadhyay B, Mukherjee
M, Bandyopadhyay A, Mukherjee N, Konar K, Bhattacharya S and Basu
A: Simultaneous knockdown of uPA and MMP9 can reduce breast cancer
progression by increasing cell-cell adhesion and modulating EMT
genes. Sci Rep. 6:219032016. View Article : Google Scholar : PubMed/NCBI
|
18
|
Ha JH, Ward JD, Radhakrishnan R, Jayaraman
M, Song YS and Dhanasekaran DN: Lysophosphatidic acid stimulates
epithelial to mesenchymal transition marker Slug/Snail2 in ovarian
cancer cells via Gαi2, Src, and HIF1α signaling nexus. Oncotarget.
7:37664–37679. 2016. View Article : Google Scholar : PubMed/NCBI
|
19
|
Park JH and Yoon J: Schizandrin inhibits
fibrosis and epithelial-mesenchymal transition in transforming
growth factor-β1-stimulated AML12 cells. Int Immunopharmacol.
25:276–284. 2015. View Article : Google Scholar : PubMed/NCBI
|
20
|
Amaar YG and Reeves ME: RASSF1C regulates
miR-33a and EMT marker gene expression in lung cancer cells.
Oncotarget. 10:123–132. 2019. View Article : Google Scholar : PubMed/NCBI
|
21
|
Rubina KA, Surkova EI, Semina EV, Sysoeva
VY, Kalinina NI, Poliakov AA, Treshalina HM and Tkachuk VA:
T-Cadherin expression in melanoma cells stimulates stromal cell
recruitment and invasion by regulating the expression of
chemokines, integrins and adhesion molecules. Cancers (Basel).
7:1349–1370. 2015. View Article : Google Scholar : PubMed/NCBI
|
22
|
Huang H, Nie C, Qin X, Zhou J and Zhang L:
Diosgenin inhibits the epithelial-mesenchymal transition initiation
in osteosarcoma cells via the p38MAPK signaling pathway. Oncol
Lett. 18:4278–4287. 2019.PubMed/NCBI
|
23
|
Fan S, Gao X, Chen P and Li X:
Carboxypeptidase E-ΔN promotes migration, invasiveness, and
epithelial-mesenchymal transition of human osteosarcoma cells via
the Wnt-β-catenin pathway. Biochem Cell Biol. 97:446–453. 2019.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Zhao H, Peng C, Lu X, Guo M, Yang T, Zhou
J and Hai Y: PDCD5 inhibits osteosarcoma cell metastasis via
targeting TGF-β1/Smad signaling pathway and is associated with good
prognosis. Am J Transl Res. 11:1116–1128. 2019.PubMed/NCBI
|
25
|
Sung JY, Park SY, Kim JH, Kang HG, Yoon
JH, Na YS, Kim YN and Park BK: Interferon consensus
sequence-binding protein (ICSBP) promotes epithelial-to-mesenchymal
transition (EMT)-like phenomena, cell-motility, and invasion via
TGF-β signaling in U2OS cells. Cell Death Dis. 5:e12242014.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Baba K, Davidson AJ and Tosini G:
Melatonin entrains PER2:LUC bioluminescence circadian rhythm in the
mouse cornea. Invest Ophthalmol Vis Sci. 56:4753–4758. 2015.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Dijk DJ, Duffy JF, Riel E, Shanahan TL and
Czeisler CA: Ageing and the circadian and homeostatic regulation of
human sleep during forced desynchrony of rest, melatonin and
temperature rhythms. J Physiol. 516:611–627. 1999. View Article : Google Scholar : PubMed/NCBI
|
28
|
Jenwitheesuk A, Nopparat C, Mukda S,
Wongchitrat P and Govitrapong P: Melatonin regulates aging and
neurodegeneration through energy metabolism, epigenetics, autophagy
and circadian rhythm pathways. Int J Mol Sci. 15:16848–16884. 2014.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Mao L, Summers W, Xiang S, Yuan L, Dauchy
RT, Reynolds A, Wren-Dail MA, Pointer D, Frasch T, Blask DE and
Hill SM: Melatonin represses metastasis in Her2-postive human
breast cancer cells by suppressing RSK2 expression. Mol Cancer Res.
14:1159–1169. 2016. View Article : Google Scholar : PubMed/NCBI
|
30
|
Tai SY, Huang SP, Bao BY and Wu MT:
Urinary melatonin-sulfate/cortisol ratio and the presence of
prostate cancer: A case-control study. Sci Rep. 6:296062016.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Sonehara NM, Lacerda JZ, Jardim-Perassi
BV, de Paula Jr R Jr, Moschetta-Pinheiro MG, Souza YST, de Andrade
JCJ and De Campos Zuccari DAP: Melatonin regulates tumor
aggressiveness under acidosis condition in breast cancer cell
lines. Oncol Lett. 17:1635–1645. 2019.PubMed/NCBI
|
32
|
Zou ZW, Liu T, Li Y, Chen P, Peng X, Ma C,
Zhang WJ and Li PD: Melatonin suppresses thyroid cancer growth and
overcomes radioresistance via inhibition of p65 phosphorylation and
induction of ROS. Redox Biol. 16:226–236. 2018. View Article : Google Scholar : PubMed/NCBI
|
33
|
Fic M, Gomulkiewicz A, Grzegrzolka J,
Podhorska-Okolow M, Zabel M, Dziegiel P and Jablonska K: The impact
of melatonin on colon cancer cells' resistance to doxorubicin in an
in vitro study. Int J Mol Sci. 18(pii): E13962017. View Article : Google Scholar : PubMed/NCBI
|
34
|
Kaufhold S and Bonavida B: Central role of
Snail1 in the regulation of EMT and resistance in cancer: A target
for therapeutic intervention. J Exp Clin Cancer Res. 33:622014.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Guo L, Sun C, Xu S, Xu Y, Dong Q, Zhang L,
Li W, Wang X, Ying G and Guo F: Knockdown of long non-coding RNA
linc-ITGB1 inhibits cancer stemness and epithelial-mesenchymal
transition by reducing the expression of Snail in non-small cell
lung cancer. Thorac Cancer. 10:128–136. 2019. View Article : Google Scholar : PubMed/NCBI
|
36
|
Naber HP, Drabsch Y, Snaar-Jagalska BE,
ten Dijke P and van Laar T: Snail and Slug, key regulators of
TGF-β-induced EMT, are sufficient for the induction of single-cell
invasion. Biochem Biophys Res Commun. 435:58–63. 2013. View Article : Google Scholar : PubMed/NCBI
|
37
|
Cheng J, Yang HL, Gu CJ, Liu YK, Shao J,
Zhu R, He YY, Zhu XY and Li MQ: Melatonin restricts the viability
and angiogenesis of vascular endothelial cells by suppressing
HIF-1α/ROS/VEGF. Int J Mol Med. 43:945–955. 2019.PubMed/NCBI
|
38
|
Singh SK, Mishra MK and Singh R:
Hypoxia-inducible factor-1α induces CX3CR1 expression and promotes
the epithelial to mesenchymal transition (EMT) in ovarian cancer
cells. J Ovarian Res. 12:422019. View Article : Google Scholar : PubMed/NCBI
|