1
|
Viau DM, Sala-Mercado JA, Spranger MD,
O'Leary DS and Levy PD: The pathophysiology of hypertensive acute
heart failure. Heart. 101:1861–1867. 2015. View Article : Google Scholar : PubMed/NCBI
|
2
|
Buglioni A and Burnett JC Jr:
Pathophysiology and the cardiorenal connection in heart failure.
Circulating hormones: Biomarkers or mediators. Clin Chim Acta.
443:3–8. 2015. View Article : Google Scholar : PubMed/NCBI
|
3
|
Phinikaridou A, Andia ME, Shah AM and
Botnar RM: Advances in molecular imaging of atherosclerosis and
myocardial infarction: Shedding new light on in vivo cardiovascular
biology. Am J Physiol Heart Circ Physiol. 303:H1397–1410. 2012.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Chien KR: Molecular advances in
cardiovascular biology. Science. 260:916–917. 1993. View Article : Google Scholar : PubMed/NCBI
|
5
|
Cui S, Cui Y, Li Y, Zhang Y, Wang H, Qin
W, Chen X, Ding S, Wu D and Guo H: Inhibition of cardiac
hypertrophy by aromadendrin through down-regulating NFAT and MAPKs
pathways. Biochem Biophys Res Commun. 506:805–811. 2018. View Article : Google Scholar : PubMed/NCBI
|
6
|
Karkhanis YD, Zeltner JY, Jackson JJ and
Carlo DJ: A new and improved microassay to determine
2-keto-3-deoxyoctonate in lipopolysaccharide of Gram-negative
bacteria. Anal Biochem. 85:595–601. 1978. View Article : Google Scholar : PubMed/NCBI
|
7
|
Ishizuya-Oka A, Kajita M and Hasebe T:
Thyroid hormone-regulated Wnt5a/Ror2 signaling is essential for
dedifferentiation of larval epithelial cells into adult stem cells
in the Xenopus laevis intestine. PLoS One. 9:e1076112014.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Cheng PY, Lee YM, Wu YS, Chang TW, Jin JS
and Yen MH: Protective effect of baicalein against endotoxic shock
in rats in vivo and in vitro. Biochem Pharmacol. 73:793–804. 2007.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Lee YM, Cheng PY, Chim LS, Kung CW, Ka SM,
Chung MT and Sheu JR: Baicalein, an active component of Scutellaria
baicalensis Georgi, improves cardiac contractile function in
endotoxaemic rats via induction of heme oxygenase-1 and suppression
of inflammatory responses. J Ethnopharmacol. 135:179–185. 2011.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Lancel S, Joulin O, Favory R, Goossens JF,
Kluza J, Chopin C, Formstecher P, Marchetti P and Neviere R:
Ventricular myocyte caspases are directly responsible for
endotoxin-induced cardiac dysfunction. Circulation. 111:2596–2604.
2005. View Article : Google Scholar : PubMed/NCBI
|
11
|
Timmers L, Sluijter JP, van Keulen JK,
Hoefer IE, Nederhoff MG, Goumans MJ, Doevendans PA, van Echteld CJ,
Joles JA, Quax PH, et al: Toll-like receptor 4 mediates maladaptive
left ventricular remodeling and impairs cardiac function after
myocardial infarction. Circ Res. 102:257–264. 2008. View Article : Google Scholar : PubMed/NCBI
|
12
|
Baumgarten G, Kim SC, Stapel H, Vervölgyi
V, Bittig A, Hoeft A, Meyer R, Grohé C and Knuefermann P:
Myocardial injury modulates the innate immune system and changes
myocardial sensitivity. Basic Res Cardiol. 101:427–435. 2006.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Mizushima N and Komatsu M: Autophagy:
Renovation of cells and tissues. Cell. 147:728–741. 2011.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Mehrpour M, Esclatine A, Beau I and
Codogno P: Autophagy in health and disease. 1. Regulation and
significance of autophagy: An overview. Am J Physiol Cell Physiol.
298:C776–C785. 2010. View Article : Google Scholar : PubMed/NCBI
|
15
|
Iida T, Onodera K and Nakase H: Role of
autophagy in the pathogenesis of inflammatory bowel disease. World
J Gastroenterol. 23:1944–1953. 2017. View Article : Google Scholar : PubMed/NCBI
|
16
|
Kizilarslanoğlu MC and Ülger Z: Role of
autophagy in the pathogenesis of Alzheimer disease. Turk J Med Sci.
45:998–1003. 2015. View Article : Google Scholar : PubMed/NCBI
|
17
|
Ryter SW and Choi AM: Autophagy in lung
disease pathogenesis and therapeutics. Redox Biol. 4:215–225. 2015.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Denton D, Nicolson S and Kumar S: Cell
death by autophagy: Facts and apparent artefacts. Cell Death
Differ. 19:87–95. 2012. View Article : Google Scholar : PubMed/NCBI
|
19
|
Turdi S, Han X, Huff AF, Roe ND, Hu N, Gao
F and Ren J: Cardiac-specific overexpression of catalase attenuates
lipopolysaccharide-induced myocardial contractile dysfunction: Role
of autophagy. Free Radic Biol Med. 53:1327–1338. 2012. View Article : Google Scholar : PubMed/NCBI
|
20
|
Nabavi SF, Braidy N, Gortzi O,
Sobarzo-Sanchez E, Daglia M, Skalicka-Wozniak K and Nabavi SM:
Luteolin as an anti-inflammatory and neuroprotective agent: A brief
review. Brain Res Bull. 119:1–11. 2015. View Article : Google Scholar : PubMed/NCBI
|
21
|
Li J, Deng LL, Zhou ZY, Yuan D, Zhang CC
and Wang T: Protective effect of total saponins of Panax
notoginseng combined with total flavonoids of epimedium on
D-galactose-incuced senescence of H9c2 cell. Zhongguo Zhong Yao Za
Zhi. 42:555–561. 2017.(In Chinese). PubMed/NCBI
|
22
|
Wei ZC, Tong D, Yang J, Zhao KH, Meng XL
and Zhang Y: Action mechanism of total flavonoids of Hippophae
rhamnoides in treatment of myocardial ischemia based on network
pharmacology. Zhongguo Zhong Yao Za Zhi. 42:1238–1244. 2017.(In
Chinese). PubMed/NCBI
|
23
|
Tan X, Liu B, Lu J, Li S, Baiyun R, Lv Y,
Lu Q and Zhang Z: Dietary luteolin protects against HgCl2-induced
renal injury via activation of Nrf2-mediated signaling in rat. J
Inorg Biochem. 179:24–31. 2018. View Article : Google Scholar : PubMed/NCBI
|
24
|
Tsai CH, Tzeng SF, Hsieh SC, Yang YC,
Hsiao YW, Tsai MH and Hsiao PW: A standardized herbal extract
mitigates tumor inflammation and augments chemotherapy effect of
docetaxel in prostate cancer. Sci Rep. 7:156242017. View Article : Google Scholar : PubMed/NCBI
|
25
|
Wu G, Li J, Yue J, Zhang S and Yunusi K:
Liposome encapsulated luteolin showed enhanced antitumor efficacy
to colorectal carcinoma. Mol Med Rep. 17:2456–2464. 2018.PubMed/NCBI
|
26
|
Simpson P: Norepinephrine-stimulated
hypertrophy of cultured rat myocardial cells is an alpha 1
adrenergic response. J Clin Invest. 72:732–738. 1983. View Article : Google Scholar : PubMed/NCBI
|
27
|
Simpson P, McGrath A and Savion S: Myocyte
hypertrophy in neonatal rat heart cultures and its regulation by
serum and by catecholamines. Circ Res. 51:787–801. 1982. View Article : Google Scholar : PubMed/NCBI
|
28
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Kabeya Y, Mizushima N, Ueno T, Yamamoto A,
Kirisako T, Noda T, Kominami E, Ohsumi Y and Yoshimori T: LC3, a
mammalian homologue of yeast Apg8p, is localized in autophagosome
membranes after processing. EMBO J. 19:5720–5728. 2000. View Article : Google Scholar : PubMed/NCBI
|
30
|
Zhang J, Liu L, Xue Y, Ma Y, Liu X, Li Z,
Li Z and Liu Y: Endothelial monocyte-activating polypeptide-II
induces BNIP3-mediated mitophagy to enhance temozolomide
cytotoxicity of glioma stem cells via down-regulating MiR-24-3p.
Front Mol Neurosci. 11:922018. View Article : Google Scholar : PubMed/NCBI
|
31
|
Wang YS, Zhou J, Hong K, Cheng XS and Li
YG: MicroRNA-223 displays a protective role against cardiomyocyte
hypertrophy by targeting cardiac troponin I-interacting kinase.
Cell Physiol Biochem. 35:1546–1556. 2015. View Article : Google Scholar : PubMed/NCBI
|
32
|
Giguère H, Dumont AA, Berthiaume J,
Oliveira V, Laberge G and Auger-Messier M: ADAP1 limits neonatal
cardiomyocyte hypertrophy by reducing integrin cell surface
expression. Sci Rep. 8:136052018. View Article : Google Scholar : PubMed/NCBI
|
33
|
Kabeya Y, Mizushima N, Yamamoto A,
Oshitani-Okamoto S, Ohsumi Y and Yoshimori T: LC3, GABARAP and
GATE16 localize to autophagosomal membrane depending on form-II
formation. J Cell Sci. 117:2805–2812. 2004. View Article : Google Scholar : PubMed/NCBI
|
34
|
Yang Y: Wnt signaling in development and
disease. Cell Biosci. 2:142012. View Article : Google Scholar : PubMed/NCBI
|
35
|
Cadigan KM and Peifer M: Wnt signaling
from development to disease: Insights from model systems. Cold
Spring Harb Perspect Biol. 1:a0028812009. View Article : Google Scholar : PubMed/NCBI
|
36
|
Naito AT, Shiojima I, Akazawa H, Hidaka K,
Morisaki T, Kikuchi A and Komuro I: Developmental stage-specific
biphasic roles of Wnt/beta-catenin signaling in cardiomyogenesis
and hematopoiesis. Proc Natl Acad Sci USA. 103:19812–19817. 2006.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Lian X, Zhang J, Zhu K, Kamp TJ and
Palecek SP: Insulin inhibits cardiac mesoderm, not mesendoderm,
formation during cardiac differentiation of human pluripotent stem
cells and modulation of canonical Wnt signaling can rescue this
inhibition. Stem Cells. 31:447–457. 2013. View Article : Google Scholar : PubMed/NCBI
|
38
|
Liu CJ, Cheng YC, Lee KW, Hsu HH, Chu CH,
Tsai FJ, Tsai CH, Chu CY, Liu JY, Kuo WW and Huang CY:
Lipopolysaccharide induces cellular hypertrophy through
calcineurin/NFAT-3 signaling pathway in H9c2 myocardiac cells. Mol
Cell Biochem. 313:167–178. 2008. View Article : Google Scholar : PubMed/NCBI
|
39
|
Yang RB, Mark MR, Gray A, Huang A, Xie MH,
Zhang M, Goddard A, Wood WI, Gurney AL and Godowski PJ: Toll-like
receptor-2 mediates lipopolysaccharide-induced cellular signalling.
Nature. 395:284–288. 1998. View
Article : Google Scholar : PubMed/NCBI
|
40
|
Yasuda S and Lew WY: Lipopolysaccharide
depresses cardiac contractility and beta-adrenergic contractile
response by decreasing myofilament response to Ca2+ in cardiac
myocytes. Circ Res. 81:1011–1020. 1997. View Article : Google Scholar : PubMed/NCBI
|
41
|
Frey N, Katus HA, Olson EN and Hill JA:
Hypertrophy of the heart: A new therapeutic target? Circulation.
109:1580–1589. 2004. View Article : Google Scholar : PubMed/NCBI
|
42
|
Levine B, Mizushima N and Virgin HW:
Autophagy in immunity and inflammation. Nature. 469:323–335. 2011.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Mizushima N: Autophagy: Process and
function. Genes Dev. 21:2861–2873. 2007. View Article : Google Scholar : PubMed/NCBI
|
44
|
Klionsky DJ: Autophagy: From phenomenology
to molecular understanding in less than a decade. Nat Rev Mol Cell
Biol. 8:931–937. 2007. View Article : Google Scholar : PubMed/NCBI
|
45
|
Kamada Y, Sekito T and Ohsumi Y: Autophagy
in yeast: A TOR-mediated response to nutrient starvation. Curr Top
Microbiol Immunol. 279:73–84. 2004.PubMed/NCBI
|
46
|
Levine B and Klionsky DJ: Development by
self-digestion: Molecular mechanisms and biological functions of
autophagy. Dev Cell. 6:463–477. 2004. View Article : Google Scholar : PubMed/NCBI
|
47
|
Kuballa P, Nolte WM, Castoreno AB and
Xavier RJ: Autophagy and the immune system. Annu Rev Immunol.
30:611–646. 2012. View Article : Google Scholar : PubMed/NCBI
|
48
|
Prokesch A, Blaschitz A, Bauer T, Moser G,
Hiden U, Zadora J, Dechend R, Herse F and Gauster M: Placental
DAPK1 and autophagy marker LC3B-II are dysregulated by TNF-α in a
gestational age-dependent manner. Histochem Cell Biol. 147:695–705.
2017. View Article : Google Scholar : PubMed/NCBI
|
49
|
Chen S, Jiang YZ, Huang L, Zhou RJ, Yu KD,
Liu Y and Shao ZM: The residual tumor autophagy marker LC3B serves
as a prognostic marker in local advanced breast cancer after
neoadjuvant chemotherapy. Clin Cancer Res. 19:6853–6862. 2013.
View Article : Google Scholar : PubMed/NCBI
|
50
|
Zhu Q and Lin F: Molecular markers of
autophagy. Yao Xue Xue Bao. 51:33–38. 2016.(In Chinese). PubMed/NCBI
|
51
|
Qin L, Wang X, Zhang S, Feng S, Yin L and
Zhou H: Lipopolysaccharide-induced autophagy participates in the
control of pro-inflammatory cytokine release in grass carp head
kidney leukocytes. Fish Shellfish Immunol. 59:389–397. 2016.
View Article : Google Scholar : PubMed/NCBI
|
52
|
Yang X, Jing T, Li Y, He Y, Zhang W, Wang
B, Xiao Y, Wang W, Zhang J, Wei J and Lin R: Hydroxytyrosol
attenuates LPS-induced acute lung injury in mice by regulating
autophagy and sirtuin expression. Curr Mol Med. 17:149–159. 2017.
View Article : Google Scholar : PubMed/NCBI
|
53
|
Luo Y, Shang P and Li D: Luteolin: A
flavonoid that has multiple cardio-protective effects and its
molecular mechanisms. Front Pharmacol. 8:6922017. View Article : Google Scholar : PubMed/NCBI
|
54
|
Bian C, Xu T, Zhu H, Pan D, Liu Y, Luo Y,
Wu P and Li D: Luteolin inhibits ischemia/reperfusion-induced
myocardial injury in rats via downregulation of microRNA-208b-3p.
PLoS One. 10:e01448772015. View Article : Google Scholar : PubMed/NCBI
|
55
|
Fang F, Li D, Pan H, Chen D, Qi L, Zhang R
and Sun H: Luteolin inhibits apoptosis and improves cardiomyocyte
contractile function through the PI3K/Akt pathway in simulated
ischemia/reperfusion. Pharmacology. 88:149–158. 2011. View Article : Google Scholar : PubMed/NCBI
|
56
|
Nelson WJ and Nusse R: Convergence of Wnt,
beta-catenin, and cadherin pathways. Science. 303:1483–1487. 2004.
View Article : Google Scholar : PubMed/NCBI
|
57
|
Holland JD, Klaus A, Garratt AN and
Birchmeier W: Wnt signaling in stem and cancer stem cells. Curr
Opin Cell Biol. 25:254–264. 2013. View Article : Google Scholar : PubMed/NCBI
|
58
|
Clevers H: The cancer stem cell: Premises,
promises and challenges. Nat Med. 17:313–319. 2011. View Article : Google Scholar : PubMed/NCBI
|
59
|
Godoy JA, Rios JA, Zolezzi JM, Braidy N
and Inestrosa NC: Signaling pathway cross talk in Alzheimer's
disease. Cell Commun Signal. 12:232014. View Article : Google Scholar : PubMed/NCBI
|
60
|
Zhan T, Rindtorff N and Boutros M: Wnt
signaling in cancer. Oncogene. 36:1461–1473. 2017. View Article : Google Scholar : PubMed/NCBI
|
61
|
Stylianidis V, Hermans KCM and
Blankesteijn WM: Wnt Signaling in Cardiac Remodeling and Heart
Failure. Handb Exp Pharmacol. 243:371–393. 2017. View Article : Google Scholar : PubMed/NCBI
|
62
|
Huang J, Guo X, Li W and Zhang H:
Activation of Wnt/β-catenin signalling via GSK3 inhibitors direct
differentiation of human adipose stem cells into functional
hepatocytes. Sci Rep. 7:407162017. View Article : Google Scholar : PubMed/NCBI
|
63
|
Ozhan G and Weidinger G: Wnt/β-catenin
signaling in heart regeneration. Cell Reg (Lond). 4:32015.
|
64
|
Sassi Y, Avramopoulos P, Ramanujam D,
Grüter L, Werfel S, Giosele S, Brunner AD, Esfandyari D,
Papadopoulou AS, De Strooper B, et al: Cardiac myocyte miR-29
promotes pathological remodeling of the heart by activating Wnt
signaling. Nat Commun. 8:16142017. View Article : Google Scholar : PubMed/NCBI
|
65
|
Yu L, Meng W, Ding J and Cheng M: Klotho
inhibits angiotensin II-induced cardiomyocyte hypertrophy through
suppression of the AT1R/beta catenin pathway. Biochem Biophys Res
Commun. 473:455–461. 2016. View Article : Google Scholar : PubMed/NCBI
|