Effects of nuclear respiratory factor‑1 on apoptosis and mitochondrial dysfunction induced by cobalt chloride in H9C2 cells
- Authors:
- Nan Niu
- Zihua Li
- Mingxing Zhu
- Hongli Sun
- Jihui Yang
- Shimei Xu
- Wei Zhao
- Rong Song
-
Affiliations: College of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750001, P.R. China, School of Pharmacy, Tsinghua University, Beijing 100084, P.R. China, Department of Critical Care Medicine, The Fifth Hospital of the Chinese People's Liberation Army, Yinchuan, Ningxia Hui Autonomous Region 750001, P.R. China - Published online on: January 10, 2019 https://doi.org/10.3892/mmr.2019.9839
- Pages: 2153-2163
-
Copyright: © Niu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Ratcliffe P, Koivunen P, Myllyharju J, Ragoussis J, Bovée JV, Batinic-Haberle I, Vinatier C, Trichet V, Robriquet F, Oliver L and Gardie B: Update on hypoxia-inducible factors and hydroxylases in oxygen regulatory pathways: From physiology to therapeutics. Hypoxia (Auckl). 5:11–20. 2017. View Article : Google Scholar : PubMed/NCBI | |
Romero JI, Holubiec MI, Tornatore TL, Rivière S, Hanschmann EM, Kölliker-Frers RA, Tau J, Blanco E, Galeano P, Rodríguez de Fonseca F, et al: Neuronal damage induced by perinatal asphyxia is attenuated by postinjury glutaredoxin-2 administration. Oxid Med Cell Longev 2017. 41624652017. | |
Keel M and Trentz O: Pathophysiology of polytrauma. Injury. 36:691–709. 2005. View Article : Google Scholar : PubMed/NCBI | |
Grifka RG: Cyanotic congenital heart disease with increased pulmonary blood flow. Pediatr Clin North Am. 46:405–425. 1999. View Article : Google Scholar : PubMed/NCBI | |
Ostadal B, Ostadalova I and Dhalla NS: Development of cardiac sensitivity to oxygen deficiency: Comparative and ontogenetic aspects. Physiol Rev. 79:635–659. 1999. View Article : Google Scholar : PubMed/NCBI | |
Bär H, Kreuzer J, Cojoc A and Jahn L: Upregulation of embryonic transcription factors in right ventricular hypertrophy. Basic Res Cardiol. 98:285–294. 2003. View Article : Google Scholar : PubMed/NCBI | |
Murray CJ and Lopez AD: Alternative projections of mortality and disability by cause 1990–2020: Global burden of disease study. Lancet. 349:1498–1504. 1997. View Article : Google Scholar : PubMed/NCBI | |
Yach D, Hawkes C, Gould CL and Hofman KJ: The global burden of chronic diseases: Overcoming impediments to prevention and control. JAMA. 291:2616–2622. 2004. View Article : Google Scholar : PubMed/NCBI | |
Akhmedov AT, Rybin V and Marín-García J: Mitochondrial oxidative metabolism and uncoupling proteins in the failing heart. Heart Fail Rev. 20:227–249. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ingwall JS: ATP and the Heart: An Overview. Springer; US: 2002, View Article : Google Scholar | |
Ong SB and Hausenloy DJ: Mitochondrial morphology and cardiovascular disease. Cardiovasc Res. 88:16–29. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ventura-Clapier R, Garnier A, Veksler V and Joubert F: Bioenergetics of the failing heart. Biochim Biophys Acta 1813. 1360–1372. 2011. | |
Hausenloy DJ and Ruiz-Meana M: Not just the powerhouse of the cell: Emerging roles for mitochondria in the heart. Cardiovasc Res. 88:5–6. 2010. View Article : Google Scholar : PubMed/NCBI | |
Soubannier V and Mcbride HM: Positioning mitochondrial plasticity within cellular signaling cascades. Biochim Biophys Acta 1793. 154–170. 2009. | |
Dominic EA, Ramezani A, Anker SD, Verma M, Mehta N and Rao M: Mitochondrial cytopathies and cardiovascular disease. Heart. 100:611–618. 2014. View Article : Google Scholar : PubMed/NCBI | |
Saraste M: Oxidative phosphorylation at the fin de siècle. Science. 283:1488–1493. 1999. View Article : Google Scholar : PubMed/NCBI | |
Bianca B and Montagna E: The advances and new technologies for the study of mitochondrial diseases. Einstein (Sao Paulo). 14:291–293. 2016.(In English, Portuguese). View Article : Google Scholar : PubMed/NCBI | |
Björkholm P, Harish A, Hagström E, Ernst AM and Andersson SG: Mitochondrial genomes are retained by selective constraints on protein targeting. Proc Natl Acad Sci USA. 112:10154–10161. 2015. View Article : Google Scholar : PubMed/NCBI | |
El-Hattab AW and Fernando S: Mitochondrial Cardiomyopathies. Front Cardiovasc Med. 3:252016. View Article : Google Scholar : PubMed/NCBI | |
Evans MJ and Scarpulla RC: NRF-1: A trans-activator of nuclear-encoded respiratory genes in animal cells. Genes Dev. 4:1023–1034. 1990. View Article : Google Scholar : PubMed/NCBI | |
Huo L and Scarpulla RC: Mitochondrial DNA instability and peri-implantation lethality associated with targeted disruption of nuclear respiratory factor 1 in mice. Mol Cell Biol. 21:644–654. 2001. View Article : Google Scholar : PubMed/NCBI | |
Scarpulla RC: Nuclear respiratory factors and the pathways of nuclear-mitochondrial interaction. Trends Cardiovasc Med. 6:39–45. 1996. View Article : Google Scholar : PubMed/NCBI | |
Scarpulla RC: Nuclear control of respiratory gene expression in mammalian cells. J Cell Biochem. 97:673–683. 2006. View Article : Google Scholar : PubMed/NCBI | |
Virbasius CA, Virbasius JV and Scarpulla RC: NRF-1, an activator involved in nuclear-mitochondrial interactions, utilizes a new DNA-binding domain conserved in a family of developmental regulators. Genes Dev. 7:2431–2445. 1993. View Article : Google Scholar : PubMed/NCBI | |
Clayton DA: Transcription and replication of animal mitochondrial DNAs. Int Rev Cytol. 141:217–232. 1992. View Article : Google Scholar : PubMed/NCBI | |
Choi YS, Kim S, Kyu LH, Lee KU and Pak YK: In vitro methylation of nuclear respiratory factor-1 binding site suppresses the promoter activity of mitochondrial transcription factor A. Biochem Biophy Res Commun. 314:118–122. 2004. View Article : Google Scholar | |
Piantadosi CA and Suliman HB: Mitochondrial transcription factor A induction by redox activation of nuclear respiratory factor 1. J Biol Chem. 281:324–333. 2006. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Bao Y, Liu Y and Li J: Downregulation of nuclear respiratory factor-1 contributes to mitochondrial events induced by benzo(a)pyrene. Environ Toxicol. 29:780–787. 2014. View Article : Google Scholar : PubMed/NCBI | |
Suliman HB, Sweeney TE, Withers CM and Piantadosi CA: Co-regulation of nuclear respiratory factor-1 by NFkappaB and CREB links LPS-induced inflammation to mitochondrial biogenesis. J Cell Sci. 123:2565–2575. 2010. View Article : Google Scholar : PubMed/NCBI | |
Piantadosi CA and Suliman HB: Transcriptional regulation of SDHa flavoprotein by nuclear respiratory factor-1 prevents pseudo-hypoxia in aerobic cardiac cells. J Biol Chem. 283:10967–10977. 2008. View Article : Google Scholar : PubMed/NCBI | |
Wang GL and Semenza GL: Characterization of hypoxia-inducible factor 1 and regulation of DNA binding activity by hypoxia. J Biol Chem. 268:21513–21518. 1993.PubMed/NCBI | |
Wang GL and Semenza GL: Desferrioxamine induces erythropoietin gene expression and hypoxia-inducible factor 1 DNA-binding activity: Implications for models of hypoxia signal transduction. Blood. 82:3610–3615. 1993.PubMed/NCBI | |
Hervouet E, Pecina P, Demont J, Vojtísková A, Simonnet H, Houstek J and Godinot C: Inhibition of cytochrome c oxidase subunit 4 precursor processing by the hypoxia mimic cobalt chloride. Biochem Biophys Res Commun. 344:1086–1093. 2006. View Article : Google Scholar : PubMed/NCBI | |
Zhang YB, Wang X, Meister EA, Gong KR, Yan SC, Lu GW, Ji XM and Shao G: The effects of CoCl2 on HIF-1α protein under experimental conditions of autoprogressive hypoxia using mouse models. Int J Mol Sci. 15:10999–11012. 2014. View Article : Google Scholar : PubMed/NCBI | |
Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ, von Kriegsheim A, Hebestreit HF, Mukherji M, Schofield CJ, et al: Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science. 292:468–472. 2001. View Article : Google Scholar : PubMed/NCBI | |
Kaelin WG Jr: The von Hippel-Lindau tumor suppressor gene and kidney cancer. Clin Cancer Res. 10:6290S–6295S. 2004. View Article : Google Scholar : PubMed/NCBI | |
Taylor MS: Characterization and comparative analysis of the EGLN gene family. Gene. 275:125–132. 2001. View Article : Google Scholar : PubMed/NCBI | |
Bae S, Jeong HJ, Cha HJ, Kim K, Choi YM, An IS, Koh HJ, Lim DJ, Lee SJ and An S: The hypoxia-mimetic agent cobalt chloride induces cell cycle arrest and alters gene expression in U266 multiple myeloma cells. Int J Mol Med. 30:1180–1186. 2012. View Article : Google Scholar : PubMed/NCBI | |
Shrivastava K, Ram MS, Bansal A, Singh SS and Ilavazhagan G: Cobalt supplementation promotes hypoxic tolerance and facilitates acclimatization to hypobaric hypoxia in rat brain. High Alt Med Biol. 9:63–75. 2008. View Article : Google Scholar : PubMed/NCBI | |
Shrivastava K, Shukla D, Bansal A, Sairam M, Banerjee PK and Ilavazhagan G: Neuroprotective effect of cobalt chloride on hypobaric hypoxia-induced oxidative stress. Neurochem Int. 52:368–375. 2008. View Article : Google Scholar : PubMed/NCBI | |
Araya J, Maruyama M, Inoue A, Fujita T, Kawahara J, Sassa K, Hayashi R, Kawagishi Y, Yamashita N, Sugiyama E and Kobayashi M: Inhibition of proteasome activity is involved in cobalt-induced apoptosis of human alveolar macrophages. Am J Physiol Lung Cell Mol Physiol. 283:L849–L858. 2002. View Article : Google Scholar : PubMed/NCBI | |
Mecklenburgh KI, Walmsley SR, Cowburn AS, Wiesener M, Reed BJ, Upton PD, Deighton J, Greening AP and Chilvers ER: Involvement of a ferroprotein sensor in hypoxia-mediated inhibition of neutrophil apoptosis. Blood. 100:3008–3016. 2002. View Article : Google Scholar : PubMed/NCBI | |
Tello D, Balsa E, Acosta-Iborra B, Fuertes-Yebra E, Elorza A, Ordóñez Á, Corral-Escariz M, Soro I, López-Bernardo E, Perales-Clemente E, et al: Induction of the mitochondrial NDUFA4L2 protein by HIF-1α decreases oxygen consumption by inhibiting Complex I activity. Cell Metab. 14:768–779. 2011. View Article : Google Scholar : PubMed/NCBI | |
Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI | |
Tischlerova V, Kello M, Budovska M and Mojzis J: Indole phytoalexin derivatives induce mitochondrial-mediated apoptosis in human colorectal carcinoma cells. World J Gastroenterol. 23:4341–4353. 2017. View Article : Google Scholar : PubMed/NCBI | |
Venkatarame G, owda Saralamma V, Lee HJ, Hong GE, Park HS, Yumnam S, Raha S, Lee WS, Kim EH, Sung NJ, Lee SJ, et al: Korean Scutellaria baicalensis Georgi flavonoid extract induces mitochondrially mediated apoptosis in human gastric cancer AGS cells. Oncol Lett. 14:607–614. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Gao S, Jiang W, Luo C, Xu M, Bohlin L, Rosendahl M and Huang W: Antioxidative dietary compounds modulate gene expression associated with apoptosis, DNA repair, inhibition of cell proliferation and migration. Int J Mol Sci. 15:16226–16245. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Yu RY and He QY: Proteomic analysis of anticancer TCMs targeted at mitochondria. Evid Based Complement Alternat Med 2015. 5392602015. | |
Kogot-Levin A, Saada A, Leibowitz G, Soiferman D, Douiev L, Raz I and Weksler-Zangen S: Upregulation of mitochondrial content in cytochrome c oxidase deficient fibroblasts. PLoS One. 11:e01654172016. View Article : Google Scholar : PubMed/NCBI | |
van der Windt GJ, Everts B, Chang CH, Curtis JD, Freitas TC, Amiel E, Pearce EJ and Pearce EL: Mitochondrial respiratory capacity is a critical regulator Of CD8+ T cell memory development. Immunity. 36:68–78. 2012. View Article : Google Scholar : PubMed/NCBI | |
Paradis AN, Gay MS and Zhang L: Binucleation of cardiomyocytes: The transition from a proliferative to a terminally differentiated state. Drug Discovery Today. 19:602–609. 2014. View Article : Google Scholar : PubMed/NCBI | |
Li F, Wang X, Capasso JM and Gerdes AM: Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development. J Mol Cell Cardiol. 28:1737–1746. 1996. View Article : Google Scholar : PubMed/NCBI | |
Ahuja P, Sdek P and Maclellan WR: Cardiac myocyte cell cycle control in development, disease, and regeneration. Physiol Rev. 87:521–544. 2007. View Article : Google Scholar : PubMed/NCBI | |
Burrell JH, Boyn AM, Kumarasamy V, Hsieh A, Head SI and Lumbers ER: Growth and maturation of cardiac myocytes in fetal sheep in the second half of gestation. Anat Rec A Discov Mol Cell Evol Biol. 274:952–961. 2003. View Article : Google Scholar : PubMed/NCBI | |
Ostádal B, Ostádalová I, Kolár F, Charvátová Z and Netuka I: Ontogenetic development of cardiac tolerance to oxygen deprivation-possible mechanisms. Physiol Res. 58 Suppl 2:S1–S12. 2009. | |
Dai M, Cui P, Yu M, Han J, Li H and Xiu R: Melatonin modulates the expression of VEGF and HIF-1 alpha induced by CoCl2 in cultured cancer cells. J Pineal Res. 44:121–126. 2008. View Article : Google Scholar : PubMed/NCBI | |
Jiang Y, Satoh K, Watanabe S, Kusama K and Sakagami H: Inhibition of chlorogenic acid-induced cytotoxicity by CoCl2. Anticancer Res. 21:3349–3353. 2001.PubMed/NCBI | |
Jung JY, Mo HC, Yang KH, Jeong YJ, Yoo HG, Choi NK, Oh WM, Oh HK, Kim SH, Lee JH, et al: Inhibition by epigallocatechin gallate of CoCl2-induced apoptosis in rat PC12 cells. Life Sci. 80:1355–1363. 2007. View Article : Google Scholar : PubMed/NCBI | |
Chen R, Xu J, She Y, Jiang T, Zhou S, Shi H and Li C: Necrostatin-1 protects C2C12 myotubes from CoCl2-induced hypoxia. Int J Mol Med. 41:2565–2572. 2018.PubMed/NCBI | |
Chen R, Jiang T, She Y, Xu J, Li C, Zhou S, Shen H, Shi H and Liu S: Effects of cobalt chloride, a hypoxia-mimetic agent, on autophagy and atrophy in skeletal C2C12 myotubes. Biomed Res Int 2017. 70975802017. | |
Rovetta F, Stacchiotti A, Faggi F, Catalani S, Apostoli P, Fanzani A and Aleo MF: Cobalt triggers necrotic cell death and atrophy in skeletal C2C12 myotubes. Toxicol Appl Pharmacol. 271:196–205. 2013. View Article : Google Scholar : PubMed/NCBI | |
Bartz RR, Suliman HB and Piantadosi CA: Redox mechanisms of cardiomyocyte mitochondrial protection. Front Physiol. 6:2912015. View Article : Google Scholar : PubMed/NCBI | |
Chen L, Kwong M, Lu R, Ginzinger D, Lee C, Leung L and Chan JY: Nrf1 is critical for redox balance and survival of liver cells during development. Mol Cell Biol. 23:4673–4686. 2003. View Article : Google Scholar : PubMed/NCBI | |
Doerks T, Copley RR, Schultz J, Ponting CP and Bork P: Systematic identification of novel protein domain families associated with nuclear functions. Genome Res. 12:47–56. 2002. View Article : Google Scholar : PubMed/NCBI | |
Saxena S, Shukla D, Saxena S, Khan YA, Singh M, Bansal A, Sairam M and Jain SK: Hypoxia preconditioning by cobalt chloride enhances endurance performance and protects skeletal muscles from exercise-induced oxidative damage in rats. Acta Physiol (Oxf). 200:249–263. 2010. View Article : Google Scholar : PubMed/NCBI | |
Priya A, Johar K and Wong-Riley M: Nuclear respiratory factor 2 regulates the expression of the same NMDA receptor subunit genes as NRF-1: Both factors act by a concurrent and parallel mechanism to couple energy metabolism and synaptic transmission. Biochim Biophys Acta 1833. 48–58. 2013. | |
Priya A, Johar K, Nair B and Wong-Riley MT: Nuclear respiratory factor 2 regulates the transcription of AMPA receptor subunit GluA2 (Gria2). Biochim Biophys Acta 1843. 3018–3028. 2014. | |
Vercauteren K, Gleyzer N and Scarpulla RC: PGC-1-related coactivator complexes with HCF-1 and NRF-2beta in mediating NRF-2(GABP)-dependent respiratory gene expression. J Biol Chem. 283:12102–12111. 2008. View Article : Google Scholar : PubMed/NCBI | |
Lee JM, Li J, Johnson DA, Stein TD, Kraft AD, Calkins MJ, Jakel RJ and Johnson JA: Nrf2, a multi-organ protector? FASEB J. 19:1061–1066. 2005. View Article : Google Scholar : PubMed/NCBI | |
Liby KT and Sporn MB: Synthetic oleanane triterpenoids: Multifunctional drugs with a broad range of applications for prevention and treatment of chronic disease. Pharmacol Rev. 64:972–1003. 2012. View Article : Google Scholar : PubMed/NCBI | |
Arlt A, Sebens S, Krebs S, Geismann C, Grossmann M, Kruse ML, Schreiber S and Schäfer H: Inhibition of the Nrf2 transcription factor by the alkaloid trigonelline renders pancreatic cancer cells more susceptible to apoptosis through decreased proteasomal gene expression and proteasome activity. Oncogene. 32:4825–4835. 2013. View Article : Google Scholar : PubMed/NCBI | |
Arlt A, Bauer I, Schafmayer C, Tepel J, Müerköster SS, Brosch M, Röder C, Kalthoff H, Hampe J, Moyer MP, et al: Increased proteasome subunit protein expression and proteasome activity in colon cancer relate to an enhanced activation of nuclear factor E2-related factor 2 (Nrf2). Oncogene. 28:3983–3996. 2009. View Article : Google Scholar : PubMed/NCBI | |
Calvert JW, Elston M, Nicholson CK, Gundewar S, Jha S, Elrod JW, Ramachandran A and Lefer DJ: Genetic and pharmacologic hydrogen sulfide therapy attenuates ischemia-induced heart failure in mice. Circulation. 122:11–19. 2010. View Article : Google Scholar : PubMed/NCBI | |
Malhotra D, Thimmulappa R, Vij N, Navas-Acien A, Sussan T, Merali S, Zhang L, Kelsen SG, Myers A, Wise R, et al: Heightened endoplasmic reticulum stress in the lungs of patients with chronic obstructive pulmonary disease: The role of Nrf2-regulated proteasomal activity. Am J Respir Crit Care Med. 180:1196–1207. 2009. View Article : Google Scholar : PubMed/NCBI | |
Permenter MG, Dennis WE, Sutto TE, Jackson DA, Lewis JA and Stallings JD: Exposure to cobalt causes transcriptomic and proteomic changes in two rat liver derived cell lines. PLoS One. 8:e837512013. View Article : Google Scholar : PubMed/NCBI | |
Piantadosi CA, Carraway MS, Babiker A and Suliman HB: Heme oxygenase-1 regulates cardiac mitochondrial biogenesis via Nrf2-mediated transcriptional control of nuclear respiratory factor-1. Circ Res. 103:1232–1240. 2008. View Article : Google Scholar : PubMed/NCBI | |
Liu Z, Ding Y, Ye N, Wild C, Chen H and Zhou J: Direct activation of Bax protein for cancer therapy. Med Res Rev. 36:313–341. 2016. View Article : Google Scholar : PubMed/NCBI | |
Brenner D and Mak TW: Mitochondrial cell death effectors. Curr Opin Cell Biol. 21:871–877. 2009. View Article : Google Scholar : PubMed/NCBI | |
Pagliari LJ, Kuwana T, Bonzon C, Newmeyer DD, Tu S, Beere HM and Green DR: The multidomain proapoptotic molecules Bax and Bak are directly activated by heat. Proc Natl Acad Sci USA. 102:17975–17980. 2005. View Article : Google Scholar : PubMed/NCBI | |
Yin C, Knudson CM, Korsmeyer SJ and Van DT: Bax suppresses tumorigenesis and stimulates apoptosis in vivo. Nature. 385:637–640. 1997. View Article : Google Scholar : PubMed/NCBI | |
Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES and Wang X: Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell. 91:479–489. 1997. View Article : Google Scholar : PubMed/NCBI | |
Rampino N, Yamamoto H, Ionov Y, Li Y, Sawai H, Reed JC and Perucho M: Somatic frameshift mutations in the BAX gene in colon cancers of the microsatellite mutator phenotype. Science. 275:967–969. 1997. View Article : Google Scholar : PubMed/NCBI | |
Karbowski M, Norris KL, Cleland MM, Jeong SY and Youle RJ: Role of Bax and Bak in mitochondrial morphogenesis. Nature. 443:658–662. 2006. View Article : Google Scholar : PubMed/NCBI | |
Walensky LD and Gavathiotis E: BAX unleashed: The biochemical transformation of an inactive cytosolic monomer into a toxic mitochondrial pore. Trends Biochem Sci. 36:642–652. 2011. View Article : Google Scholar : PubMed/NCBI | |
Adams JM and Cory S: Bcl-2-regulated apoptosis: Mechanism and therapeutic potential. Curr Opin Immunol. 19:488–496. 2007. View Article : Google Scholar : PubMed/NCBI | |
Hata AN, Engelman JA and Faber AC: The BCL2 family: Key mediators of the apoptotic response to targeted anticancer therapeutics. Cancer Discov. 5:475–487. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kale J, Liu Q, Leber B and Andrews DW: Shedding light on apoptosis at subcellular membranes. Cell. 151:1179–1184. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wood WG, Igbavboa U, Muller WE and Eckert GP: Statins, Bcl-2 and apoptosis: Cell death or cell protection? Mol Neurobiol. 48:308–314. 2013. View Article : Google Scholar : PubMed/NCBI | |
Gogvadze V and Orrenius S: Mitochondrial regulation of apoptotic cell death. Chem Biol Interact. 163:4–14. 2006. View Article : Google Scholar : PubMed/NCBI | |
Jeong SY and Seol DW: The role of mitochondria in apoptosis. BMB Rep. 41:11–22. 2008. View Article : Google Scholar : PubMed/NCBI | |
Park JB, Chang H and Kim KW: Expression of Fas ligand and apoptosis of disc cells in herniated lumbar disc tissue. Spine (Phila Pa 1976). 26:618–621. 2001. View Article : Google Scholar : PubMed/NCBI | |
Park JB, Kim KW, Han CW and Chang H: Expression of Fas receptor on disc cells in herniated lumbar disc tissue. Spine (Phila Pa 1976). 26:142–146. 2001. View Article : Google Scholar : PubMed/NCBI | |
Parsons MJ and Green DR: Mitochondria in cell death. Essays Biochem. 47:99–114. 2010. View Article : Google Scholar : PubMed/NCBI | |
Evans MJ and Scarpulla RC: Interaction of nuclear factors with multiple sites in the somatic cytochrome c promoter. Characterization of upstream NRF-1, ATF, and intron Sp1 recognition sequences. J Biol Chem. 264:14361–14368. 1989.PubMed/NCBI | |
Evans MJ and Scarpulla RC: Both upstream and intron sequence elements are required for elevated expression of the rat somatic cytochrome c gene in COS-1 cells. Mol Cell Biol. 8:35–41. 1988. View Article : Google Scholar : PubMed/NCBI | |
Scarpulla RC and Wu R: Nonallelic members of the cytochrome c multigene family of the rat may arise through different messenger RNAs. Cell. 32:473–482. 1983. View Article : Google Scholar : PubMed/NCBI | |
Chau CM, Evans MJ and Scarpulla RC: Nuclear respiratory factor 1 activation sites in genes encoding the gamma-subunit of ATP synthase, eukaryotic initiation factor 2 alpha, and tyrosine aminotransferase. Specific interaction of purified NRF-1 with multiple target genes. J Biol Chem. 267:6999–7006. 1992.PubMed/NCBI | |
Kelly DP and Scarpulla RC: Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes Dev. 18:357–368. 2004. View Article : Google Scholar : PubMed/NCBI | |
Scarpulla RC: Nuclear activators and coactivators in mammalian mitochondrial biogenesis. Biochim Biophys Acta 1576. 1–14. 2002. | |
Scarpulla RC: Transcriptional activators and coactivators in the nuclear control of mitochondrial function in mammalian cells. Gene. 286:81–89. 2002. View Article : Google Scholar : PubMed/NCBI | |
Scarpulla RC: Nuclear control of respiratory chain expression by nuclear respiratory factors and PGC-1-related coactivator. Ann NY Acad Sci 1147. 321–334. 2008. View Article : Google Scholar | |
Perry SW, Norman JP, Barbieri J, Brown EB and Gelbard HA: Mitochondrial membrane potential probes and the proton gradient: A practical usage guide. Biotechniques. 50:98–115. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zhang BB, Wang DG, Guo FF and Xuan C: Mitochondrial membrane potential and reactive oxygen species in cancer stem cells. Fam Cancer. 14:19–23. 2015. View Article : Google Scholar : PubMed/NCBI | |
Henry-Mowatt J, Dive C, Martinou JC and James D: Role of mitochondrial membrane permeabilization in apoptosis and cancer. Oncogene. 23:2850–2860. 2004. View Article : Google Scholar : PubMed/NCBI | |
Lakhani SA, Masud A, Kuida K, Porter GA Jr, Booth CJ, Mehal WZ, Inayat I and Flavell RA: Caspases 3 and 7: Key mediators of mitochondrial events of apoptosis. Science. 311:847–851. 2006. View Article : Google Scholar : PubMed/NCBI | |
Ly JD, Grubb DR and Lawen A: The mitochondrial membrane potential (deltapsi(m)) in apoptosis; an update. Apoptosis. 8:115–128. 2003. View Article : Google Scholar : PubMed/NCBI | |
Campbell CT, Kolesar JE and Kaufman BA: Mitochondrial transcription factor A regulates mitochondrial transcription initiation, DNA packaging, and genome copy number. Biochim Biophys Acta 1819. 921–929. 2012. | |
Fisher RP and Clayton DA: Purification and characterization of human mitochondrial transcription factor 1. Mol Cell Biol. 8:3496–3509. 1988. View Article : Google Scholar : PubMed/NCBI | |
Parisi MA and Clayton DA: Similarity of human mitochondrial transcription factor 1 to high mobility group proteins. Science. 252:965–969. 1991. View Article : Google Scholar : PubMed/NCBI | |
Maier D, Farr CL, Poeck B, Alahari A, Vogel M, Fischer S, Kaguni LS and Schneuwly S: Mitochondrial single-stranded DNA-binding protein is required for mitochondrial DNA replication and development in Drosophila melanogaster. Mol Biol Cell. 12:821–830. 2001. View Article : Google Scholar : PubMed/NCBI | |
Takamatsu C, Umeda S, Ohsato T, Ohno T, Abe Y, Fukuoh A, Shinagawa H, Hamasaki N and Kang D: Regulation of mitochondrial D-loops by transcription factor A and single-stranded DNA-binding protein. EMBO Rep. 3:451–456. 2002. View Article : Google Scholar : PubMed/NCBI | |
Van Dyck E, Foury F, Stillman B and Brill SJ: A single-stranded DNA binding protein required for mitochondrial DNA replication in S. cerevisiae is homologous to E. coli SSB. EMBO J. 11:3421–3430. 1992. View Article : Google Scholar : PubMed/NCBI | |
Mali VR, Pan G, Deshpande M, Thandavarayan RA, Xu J, Yang XP and Palaniyandi SS: Cardiac mitochondrial respiratory dysfunction and tissue damage in chronic hyperglycemia correlate with reduced aldehyde dehydrogenase-2 activity. PLoS One. 11:e01631582016. View Article : Google Scholar : PubMed/NCBI |