1
|
Bansal Y and Kuhad A: Mitochondrial
dysfunction in depression. Curr Neuropharmacol. 14:610–618. 2016.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Herbet M, Korga A, Gawrońska-Grzywacz M,
Izdebska M, Piątkowska-Chmiel I, Poleszak E, Wróbel A, Matysiak W,
Jodłowska-Jędrych B and Dudka J: Chronic variable stress is
responsible for lipid and DNA oxidative disorders and activation of
oxidative stress response genes in the brain of rats. Oxid Med Cell
Longev 2017. 73130902017.
|
3
|
Khan S and Khan RA: Chronic stress leads
to anxiety and depression. Ann Psychiatry Ment Health.
5:10912017.
|
4
|
Tagliari B, Noschang CG, Ferreira AG,
Ferrari OA, Feksa LR, Wannmacher CM, Dalmaz C and Wyse AT: Chronic
variable stress impairs energy metabolism in prefrontal cortex and
hippocampus of rats: Prevention by chronic antioxidant treatment.
Metab Brain Dis. 25:169–176. 2010. View Article : Google Scholar : PubMed/NCBI
|
5
|
Mergenthaler P, Lindauer U, Dienel GA and
Meisel A: Sugar for the brain: The role of glucose in physiological
and pathological brain function. Trends Neurosci. 36:587–597. 2013.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Detka J, Kurek A, Kucharczyk M, Głombik K,
Basta-Kaim A, Kubera M, Lasoń W and Budziszewska B: Brain glucose
metabolism in an animal model of depression. Neuroscience.
295:198–208. 2015. View Article : Google Scholar : PubMed/NCBI
|
7
|
Ishida A, Noda Y and Ueda T: Synaptic
vesicle-bound pyruvate kinase can support vesicular glutamate
uptake. Neurochem Res. 34:807–818. 2009. View Article : Google Scholar : PubMed/NCBI
|
8
|
Rezin GT, Cardoso MR, Gonçalves CL, Scaini
G, Fraga DB, Riegel RE, Comim CM, Quevedo J and Streck EL:
Inhibition of mitochondrial respiratory chain in brain of rats
subjected to an experimental model of depression. Neurochem Int.
53:395–400. 2008. View Article : Google Scholar : PubMed/NCBI
|
9
|
Bélanger M, Allaman I and Magistretti PJ:
Brain energy metabolism: Focus on astrocyte-neuron metabolic
cooperation. Cell Metab. 14:724–738. 2011. View Article : Google Scholar : PubMed/NCBI
|
10
|
Griffin JW and Bradshaw PC: Amino acid
catabolism in Alzheimer's disease brain: Friend or foe? Oxid Med
Cell Longev. 2017.54727922017.PubMed/NCBI
|
11
|
Chiefari E, Foti DP, Sgarra R, Pegoraro S,
Arcidiacono B, Brunetti FS, Greco M and Manfioletti G:
Transcriptional regulation of glucose metabolism: The emerging role
of the HMGA1 chromatin factor. Front Endocrinol (Lausanne).
9:3572018. View Article : Google Scholar : PubMed/NCBI
|
12
|
Shah K, Desilva S and Abbruscato T: The
role of glucose transporters in brain disease: Diabetes and
alzheimer's disease. Int J Mol Sci. 13:12629–12655. 2012.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Camandola S and Mattson MP: Brain
metabolism in health, aging, and neurodegeneration. EMBO J.
36:1474–1492. 2017. View Article : Google Scholar : PubMed/NCBI
|
14
|
Butterfield DA, Hardas SS and Lange ML:
Oxidatively modified glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) and Alzheimer's disease: Many pathways to
neurodegeneration. J Alzheimers Dis. 20:369–393. 2010. View Article : Google Scholar : PubMed/NCBI
|
15
|
Kasashima K and Endo H: Interaction of
human mitochondrial transcription factor A in mitochondria: Its
involvement in the dynamics of mitochondrial DNA nucleoids. Genes
Cells. 20:1017–1027. 2015. View Article : Google Scholar : PubMed/NCBI
|
16
|
Campbell CT, Kolesar JE and Kaufman BA:
Mitochondrial transcription factor A regulates mitochondrial
transcription initiation, DNA packaging, and genome copy number.
Biochim Biophys Acta 1819. 921–929. 2012.
|
17
|
Murakami T, Yamane H, Tomonaga T and
Furuse M: Forced swimming and imipramine modify plasma and brain
amino acid concentrations in mice. Eur J Pharmacol. 602:73–77.
2009. View Article : Google Scholar : PubMed/NCBI
|
18
|
Nagasawa M, Ogino Y, Kurata K, Otsuka T,
Yoshida J, Tomonaga S and Furuse M: Hypothesis with abnormal amino
acid metabolism in depression and stress vulnerability in Wistar
Kyoto rats. Amino Acids. 43:2101–2111. 2012. View Article : Google Scholar : PubMed/NCBI
|
19
|
Yip J, Geng X, Shen J and Ding Y: Cerebral
gluconeogenesis and diseases. Front Pharmacol. 7:5212017.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Heimburger DC and Ard JD: Handbook of
Clinical Nutrition. 4th. Elsevier Inc.; 2006, https://doi.org/10.1016/C2009-0-45871-9
|
21
|
Ghosh A, Cheung YY, Mansfield BC and Chou
JY: Brain contains a functional glucose-6-phosphatase complex
capable of endogenous glucose production. J Biol Chem.
280:11114–11119. 2005. View Article : Google Scholar : PubMed/NCBI
|
22
|
Maher T: The role of amino acid precursors
on neurotransmission. Eur J Pharmacol. 668:e82011. View Article : Google Scholar
|
23
|
Gamaro GD, Manoli LP, Torres IL, Silveira
R and Dalmaz C: Effects of chronic variate stress on feeding
behavior and on monoamine levels in different rat brain structures.
Neurochem Int. 42:107–114. 2003. View Article : Google Scholar : PubMed/NCBI
|
24
|
Zhao Z, Wang W, Guo H and Zhou D:
Antidepressant-like effect of liquiritin from Glycyrrhiza uralensis
in chronic variable stress induced depression model rats. Behav
Brain Res. 194:108–113. 2008. View Article : Google Scholar : PubMed/NCBI
|
25
|
Porsolt RD, Bertin A and Jalfre M:
Behavioral despair in mice: A primary screening test for
antidepressants. Arch Int Pharmacodyn Ther. 229:327–336.
1977.PubMed/NCBI
|
26
|
Iłżecka J, Stelmasiak Z, Solski J,
Wawrzycki S and Szpetnar M: Plasma amino acids concentration in
amyotrophic lateral sclerosis patients. Amino Acids. 25:69–73.
2003. View Article : Google Scholar : PubMed/NCBI
|
27
|
Bekris S, Antoniou K, Daskas S and
Papadopoulou-Daifoti Z: Behavioural and neurochemical effects
induced by chronic mild stress applied to two different rat
strains. Behav Brain Res. 161:45–59. 2005. View Article : Google Scholar : PubMed/NCBI
|
28
|
Packard AE, Ghosal S, Herman JP, Woods SC
and Ulrich-Lai YM: Chronic variable stress improves glucose
tolerance in rats with sucrose-induced prediabetes.
Psychoneuroendocrinology. 47:178–188. 2014. View Article : Google Scholar : PubMed/NCBI
|
29
|
MacQueen G and Frodl T: The hippocampus in
major depression: Evidence for the convergence of the bench and
bedside in psychiatric research? Mol Psychiatry. 16:252–264. 2011.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Pandya M, Altinay M, Malone DA Jr and
Anand A: Where in the brain is depression? Curr Psychiatry Rep.
14:634–642. 2012. View Article : Google Scholar : PubMed/NCBI
|
31
|
Dienel GA: Fueling and imaging brain
activation. ASN Neuro. 4(pii): e000932012.PubMed/NCBI
|
32
|
Detka J, Kurek A, Basta-Kaim A, Kubera M,
Lasoń W and Budziszewska B: Elevated brain glucose and glycogen
concentrations in an animal model of depression.
Neuroendocrinology. 100:178–190. 2014. View Article : Google Scholar : PubMed/NCBI
|
33
|
Khayat ZA, McCal AL and Klip A: Unique
mechanism of GLUT3 glucose transporter regulation by prolonged
energy demand: increased protein half-life. Biochem J. 333:713–718.
1998. View Article : Google Scholar : PubMed/NCBI
|
34
|
Fontella FU, Siqueira IR, Vasconcellos AP,
Tabajara AS, Netto CA and Dalmaz C: Repeated restraint stress
induces oxidative damage in rat hippocampus. Neurochem Res.
30:105–111. 2005. View Article : Google Scholar : PubMed/NCBI
|
35
|
Lucca G, Comim CM, Valvassori SS, Réus GZ,
Vuolo F, Petronilho F, Gavioli EC, Dal-Pizzol F and Quevedo J:
Increased oxidative stress in submitochondrial particles into the
brain of rats submitted to the chronic mild stress paradigm. J
Psychiatr Res. 43:864–869. 2009. View Article : Google Scholar : PubMed/NCBI
|
36
|
Liemburg-Apers DC, Willems PH, Koopman WJ
and Grefte S: Interactions between mitochondrial reactive oxygen
species and cellular glucose metabolism. Arch Toxicol.
89:1209–1226. 2015. View Article : Google Scholar : PubMed/NCBI
|
37
|
Ishitani R, Kimura M, Sunaga K, Katsube N,
Tanaka M and Chuang DM: An antisense oligodeoxynucleotide to
glyceraldehyde-3-phosphate dehydrogenase blocks age-induced
apoptosis of mature cerebrocortical neurons in culture. J Pharmacol
Exp Ther. 278:447–454. 1996.PubMed/NCBI
|
38
|
Ishitani R, Sunaga K, Hirano A, Saunders
P, Katsube N and Chuang DM: Evidence that
glyceraldehyde-3-phosphate dehydrogenase is involved in age-induced
apoptosis in mature cerebellar neurons in culture. J Neurochem.
66:928–935. 1996. View Article : Google Scholar : PubMed/NCBI
|
39
|
Vilà MR, Nicolás A, Morote J, de Torres I
and Meseguer A: Increased glyceraldehyde-3-phosphate dehydrogenase
expression in renal cell carcinoma identified by RNA-based,
arbitrarily primed polymerase chain reaction. Cancer. 89:152–164.
2000. View Article : Google Scholar : PubMed/NCBI
|
40
|
Grant CM: Metabolic reconfiguration is a
regulated response to oxidative stress. J Biol. 7:12008. View Article : Google Scholar : PubMed/NCBI
|
41
|
Chuang DM, Hough C and Senatorov VV:
Glyceraldehyde-3-phosphate dehydrogenase, apoptosis, and
neurodegenerative diseases. Annu Rev Pharmacol Toxicol. 45:269–290.
2005. View Article : Google Scholar : PubMed/NCBI
|
42
|
Tarze A, Deniaud A, Le Bras M, Maillier E,
Molle D, Larochette N, Zamzami N, Jan G, Kroemer G and Brenner C:
GAPDH, a novel regulator of the pro-apoptotic mitochondrial
membrane permeabilization. Oncogene. 26:2606–2620. 2007. View Article : Google Scholar : PubMed/NCBI
|
43
|
Mazzola JL and Sirover MA: Alteration of
intracellular structure and function of glyceraldehyde-3-phosphate
dehydrogenase: A common phenotype of neurodegenerative disorders?
Neurotoxicology. 23:603–609. 2002. View Article : Google Scholar : PubMed/NCBI
|
44
|
Sirover MA: Role of the glycolytic
protein, glyceraldehyde-3-phosphate dehydrogenase, in normal cell
function and in cell pathology. J Cell Biochem. 66:133–140. 1997.
View Article : Google Scholar : PubMed/NCBI
|
45
|
Tatton WG, Chalmers-Redman RM, Elstner M,
Leesch W, Jagodzinski FB, Stupak DP, Sugrue MM and Tatton NA:
Glyceraldehyde-3-phosphate dehydrogenase in neurodegeneration and
apoptosis signaling. J Neural Transm Suppl. 77–100. 2000.PubMed/NCBI
|
46
|
Ross JM, Öberg J, Brené S, Coppotelli G,
Terzioglu M, Pernold K, Goiny M, Sitnikov R, Kehr J, Trifunovic A,
et al: High brain lactate is a hallmark of aging and caused by a
shift in the lactate dehydrogenase A/B ratio. Proc Natl Acad Sci
USA. 107:20087–20092. 2010. View Article : Google Scholar : PubMed/NCBI
|
47
|
Schurr A: Lactate: The ultimate cerebral
oxidative energy substrate? J Cereb Blood Flow Metab. 26:142–152.
2006. View Article : Google Scholar : PubMed/NCBI
|
48
|
Mosconi L, Pupi A and De Leon MJ: Brain
glucose hypometabolism and oxidative stress in preclinical
Alzheimer's disease. Ann N Y Acad Sci 1147. 180–195. 2008.
View Article : Google Scholar
|
49
|
Nakanishi H and Wu Z: Microglia-aging:
Roles of microglial lysosome- and mitochondria-derived reactive
oxygen species in brain aging. Behav Brain Res. 201:1–7. 2009.
View Article : Google Scholar : PubMed/NCBI
|
50
|
Yoshida Y, Izumi H, Ise T, Uramoto H,
Torigoe T, Ishiguchi H, Murakami T, Tanabe M, Nakayama Y, Itoh H,
et al: Human mitochondrial transcription factor A binds
preferentially to oxidatively damaged DNA. Biochem Biophys Res
Commun. 295:945–951. 2002. View Article : Google Scholar : PubMed/NCBI
|
51
|
Jeng JY, Yeh TS, Lee JW, Lin SH, Fong TH
and Hsieh RH: Maintenance of mitochondrial DNA copy number and
expression are essential for preservation of mitochondrial function
and cell growth. J Cell Biochem. 103:347–357. 2008. View Article : Google Scholar : PubMed/NCBI
|
52
|
Toki N, Kagami S, Kurita T, Kawagoe T,
Matsuura Y, Hachisuga T, Matsuyama A, Hashimoto H, Izumi H and
Kohno K: Expression of mitochondrial transcription factor A in
endometrial carcinomas: Clinicopathologic correlations and
prognostic significance. Virchows Arch. 456:387–393. 2010.
View Article : Google Scholar : PubMed/NCBI
|
53
|
Kang D, Kim SH and Hamasaki N:
Mitochondrial transcription factor A (TFAM): Roles in maintenance
of mtDNA and cellular functions. Mitochondrion. 7:39–44. 2007.
View Article : Google Scholar : PubMed/NCBI
|
54
|
Lee AL, Ogle WO and Sapolsky RM: Stress
and depression: Possible links to neuron death in the hippocampus.
Bipolar Disord. 4:117–128. 2002. View Article : Google Scholar : PubMed/NCBI
|
55
|
Gałecki P, Florkowski A, Mrowicka M,
Pietras T and Gałecka E: Calcium ions, glutaminate acid,
hypothalamic-pituitary-adrenal axis, calcium dependent ATP-ase as
causes of oxidative damage in depression patients (part II). Pol
Merkur Lekarski. 24:72–75. 2008.(In Polish). PubMed/NCBI
|
56
|
Magistretti PJ and Pellerin L: Cellular
mechanisms of brain energy metabolism and their relevance to
functional brain imaging. Philos Trans R Soc Lond B Biol Sci.
354:1155–1163. 1999. View Article : Google Scholar : PubMed/NCBI
|
57
|
Hasselbalch SG, Knudsen GM, Jakobsen J,
Hageman LP, Holm S and Paulson OB: Brain metabolism during
short-term starvation in humans. J Cereb Blood Flow Metab.
14:125–131. 1994. View Article : Google Scholar : PubMed/NCBI
|
58
|
White H and Venkatesh B: Clinical review:
Ketones and brain injury. Crit Care. 15:2192011. View Article : Google Scholar : PubMed/NCBI
|
59
|
Rowland NE: Food or fluid restriction in
common laboratory animals: Balancing welfare considerations with
scientific inquiry. Comp Med. 57:149–160. 2007.PubMed/NCBI
|
60
|
Kay GW, Verbeek MM, Furlong JM, Willemsen
MA and Palmer DN: Neuropeptide changes and neuroactive amino acids
in CSF from humans and sheep with neuronal ceroid lipofuscinoses
(NCLs, Batten disease). Neurochem Int. 55:783–788. 2009. View Article : Google Scholar : PubMed/NCBI
|
61
|
Ni Y, Su M, Lin J, Wang X, Qiu Y, Zhao A,
Chen T and Jia W: Metabolic profiling reveals disorder of amino
acid metabolism in four brain regions from a rat model of chronic
unpredictable mild stress. FEBS Lett. 582:2627–2636. 2008.
View Article : Google Scholar : PubMed/NCBI
|
62
|
Xu HB, Zhang RF, Luo D, Zhou Y, Wang Y,
Fang L, Li WJ, Mu J, Zhang L, Zhang Y and Xie P: Comparative
proteomic analysis of plasma from major depressive patients:
Identification of proteins associated with lipid metabolism and
immunoregulation. Int J Neuropsychopharmacol. 15:1413–1425. 2012.
View Article : Google Scholar : PubMed/NCBI
|
63
|
Shao WH, Chen JJ, Fan SH, Lei Y, Xu HB,
Zhou J, Cheng PF, Yang YT, Rao CL, Wu B, et al: Combined
metabolomics and proteomics analysis of major depression in an
animal model: Perturbed energy metabolism in the chronic mild
stressed rat cerebellum. OMICS. 19:383–392. 2015. View Article : Google Scholar : PubMed/NCBI
|
64
|
Kantrowitz JT and Javitt DC:
N-methyl-d-aspartate (NMDA) receptor dysfunction or dysregulation:
The final common pathway on the road to schizophrenia? Brain Res
Bull. 83:108–121. 2010. View Article : Google Scholar : PubMed/NCBI
|