Functional genetic variants of the GATA4 gene promoter in acute myocardial infarction
- Authors:
- Jing Chen
- Shuai Wang
- Shuchao Pang
- Yinghua Cui
- Bo Yan
- Robert G. Hawley
-
Affiliations: Department of Medicine, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China, Shandong Provincial Key Laboratory of Cardiac Disease Diagnosis and Treatment, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, P.R. China, Division of Cardiology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, P.R. China, Department of Anatomy and Regenerative Biology, The George Washington University, Washington, DC 20037, USA - Published online on: January 30, 2019 https://doi.org/10.3892/mmr.2019.9914
- Pages: 2861-2868
This article is mentioned in:
Abstract
Connelly MA, Shalaurova I and Otvos JD: High-density lipoprotein and inflammation in cardiovascular disease. Transl Res. 173:7–18. 2016. View Article : Google Scholar : PubMed/NCBI | |
Shapiro MD and Fazio S: From lipids to inflammation: New approaches to reducing atherosclerotic risk. Circ Res. 118:732–749. 2016. View Article : Google Scholar : PubMed/NCBI | |
Assimes TL and Roberts R: Genetics: Implications for prevention and management of coronary artery disease. J Am Coll Cardiol. 68:2797–2818. 2016. View Article : Google Scholar : PubMed/NCBI | |
Björkegren JL, Kovacic JC, Dudley JT and Schadt EE: Genome-wide significant loci: How important are they? Systems genetics to understand heritability of coronary artery disease and other common complex disorders. J Am Coll Cardiol. 65:830–845. 2015. View Article : Google Scholar : PubMed/NCBI | |
McPherson R and Tybjaerg-Hansen A: Genetics of coronary artery disease. Circ Res. 118:564–578. 2016. View Article : Google Scholar : PubMed/NCBI | |
Fedchenko M, Mandalenakis Z, Rosengren A, Lappas G, Eriksson P, Skoglund K and Dellborg M: Ischemic heart disease in children and young adults with congenital heart disease in Sweden. Int J Cardiol. 248:143–148. 2017. View Article : Google Scholar : PubMed/NCBI | |
Olsen M, Marino B, Kaltman J, Laursen H, Jakobsen L, Mahle W, Pearson G and Madsen N: Myocardial infarction in adults with congenital heart disease. Am J Cardiol. 120:2272–2277. 2017. View Article : Google Scholar : PubMed/NCBI | |
Tutarel O, Kempny A, Alonso-Gonzalez R, Jabbour R, Li W, Uebing A, Dimopoulos K, Swan L, Gatzoulis MA and Diller GP: Congenital heart disease beyond the age of 60: Emergence of a new population with high resource utilization, high morbidity, and high mortality. Eur Heart J. 35:725–732. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lentjes MH, Niessen HE, Akiyama Y, de Bruïne AP, Melotte V and van Engeland M: The emerging role of GATA transcription factors in development and disease. Expert Rev Mol Med. 18:e32016. View Article : Google Scholar : PubMed/NCBI | |
Peterkin T, Gibson A, Loose M and Patient R: The roles of GATA-4, −5 and −6 in vertebrate heart development. Semin Cell Dev Biol. 16:83–94. 2005. View Article : Google Scholar : PubMed/NCBI | |
Pikkarainen S, Tokola H, Kerkelä R and Ruskoaho H: GATA transcription factors in the developing and adult heart. Cardiovasc Res. 63:196–207. 2004. View Article : Google Scholar : PubMed/NCBI | |
Burch JB: Regulation of GATA gene expression during vertebrate development. Semin Cell Dev Biol. 16:71–81. 2005. View Article : Google Scholar : PubMed/NCBI | |
Kuo CT, Morrisey EE, Anandappa R, Sigrist K, Lu MM, Parmacek MS, Soudais C and Leiden JM: GATA4 transcription factor is required for ventral morphogenesis and heart tube formation. Genes Dev. 11:1048–1060. 1997. View Article : Google Scholar : PubMed/NCBI | |
Molkentin JD, Lin Q, Duncan SA and Olson EN: Requirement of the transcription factor GATA4 for heart tube formation and ventral morphogenesis. Genes Dev. 11:1061–1072. 1997. View Article : Google Scholar : PubMed/NCBI | |
Zeisberg EM, Ma Q, Juraszek AL, Moses K, Schwartz RJ, Izumo S and Pu WT: Morphogenesis of the right ventricle requires myocardial expression of Gata4. J Clin Invest. 115:1522–1531. 2005. View Article : Google Scholar : PubMed/NCBI | |
Prendiville TW, Guo H, Lin Z, Zhou P, Stevens SM, He A, VanDusen N, Chen J, Zhong L, Wang DZ, et al: Novel roles of GATA4/6 in the postnatal heart identified through temporally controlled, cardiomyocyte-specific gene inactivation by Adeno-associated virus delivery of Cre recombinase. PLoS One. 10:e01281052015. View Article : Google Scholar : PubMed/NCBI | |
Crispino JD, Lodish MB, Thurberg BL, Litovsky SH, Collins T, Molkentin JD and Orkin SH: Proper coronary vascular development and heart morphogenesis depend on interaction of GATA-4 with FOG cofactors. Genes Dev. 15:839–844. 2001. View Article : Google Scholar : PubMed/NCBI | |
Heineke J, Auger-Messier M, Xu J, Oka T, Sargent MA, York A, Klevitsky R, Vaikunth S, Duncan SA, Aronow BJ, et al: Cardiomyocyte GATA4 functions as a stress-responsive regulator of angiogenesis in the murine heart. J Clin Invest. 117:3198–3210. 2007. View Article : Google Scholar : PubMed/NCBI | |
Tevosian SG, Deconinck AE, Tanaka M, Schinke M, Litovsky SH, Izumo S, Fujiwara Y and Orkin SH: FOG-2, a cofactor for GATA transcription factors, is essential for heart morphogenesis and development of coronary vessels from epicardium. Cell. 101:729–739. 2000. View Article : Google Scholar : PubMed/NCBI | |
Schlueter J and Brand T: Epicardial progenitor cells in cardiac development and regeneration. J Cardiovasc Transl Res. 5:641–653. 2012. View Article : Google Scholar : PubMed/NCBI | |
Watt AJ, Battle MA, Li J and Duncan SA: GATA4 is essential for formation of the proepicardium and regulates cardiogenesis. Proc Natl Acad Sci USA. 101:12573–12578. 2004. View Article : Google Scholar : PubMed/NCBI | |
Malek Mohammadi M, Kattih B, Grund A, Froese N, Korf-Klingebiel M, Gigina A, Schrameck U, Rudat C, Liang Q, Kispert A, et al: The transcription factor GATA4 promotes myocardial regeneration in neonatal mice. EMBO Mol Med. 9:265–279. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kang C, Xu Q, Martin TD, Li MZ, Demaria M, Aron L, Lu T, Yankner BA, Campisi J and Elledge SJ: The DNA damage response induces inflammation and senescence by inhibiting autophagy of GATA4. Science. 349:aaa56122015. View Article : Google Scholar : PubMed/NCBI | |
Mazzucco AE, Smogorzewska A, Kang C, Luo J, Schlabach MR, Xu Q, Patel R and Elledge SJ: Genetic interrogation of replicative senescence uncovers a dual role for USP28 in coordinating the p53 and GATA4 branches of the senescence program. Genes Dev. 31:1933–1938. 2017. View Article : Google Scholar : PubMed/NCBI | |
Garg V, Kathiriya IS, Barnes R, Schluterman MK, King IN, Butler CA, Rothrock CR, Eapen RS, Hirayama-Yamada K, Joo K, et al: GATA4 mutations cause human congenital heart defects and reveal an interaction with TBX5. Nature. 424:443–447. 2003. View Article : Google Scholar : PubMed/NCBI | |
Rajagopal SK, Ma Q, Obler D, Shen J, Manichaikul A, Tomita-Mitchell A, Boardman K, Briggs C, Garg V, Srivastava D, et al: Spectrum of heart disease associated with murine and human GATA4 mutation. J Mol Cell Cardiol. 43:677–685. 2007. View Article : Google Scholar : PubMed/NCBI | |
Su W, Zhu P, Wang R, Wu Q, Wang M, Zhang X, Mei L, Tang J, Kumar M, Wang X, et al: Congenital heart diseases and their association with the variant distribution features on susceptibility genes. Clin Genet. 91:349–354. 2017. View Article : Google Scholar : PubMed/NCBI | |
Shaw-Smith C, De Franco E, Lango Allen H, Batlle M, Flanagan SE, Borowiec M, Taplin CE, van Alfen-van der Velden J, Cruz-Rojo J, Perez de Nanclares G, et al: GATA4 mutations are a cause of neonatal and childhood-onset diabetes. Diabetes. 63:2888–2894. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lamina C, Coassin S, Illig T and Kronenberg F: Look beyond one's own nose: Combination of information from publicly available sources reveals an association of GATA4 polymorphisms with plasma triglycerides. Atherosclerosis. 219:698–703. 2011. View Article : Google Scholar : PubMed/NCBI | |
Muiya NP, Wakil SM, Tahir AI, Hagos S, Najai M, Gueco D, Al-Tassan N, Andres E, Mazher N, Meyer BF and Dzimiri N: A study of the role of GATA4 polymorphism in cardiovascular metabolic disorders. Hum Genomics. 7:252013. View Article : Google Scholar : PubMed/NCBI | |
Xin M, Davis CA, Molkentin JD, Lien CL, Duncan SA, Richardson JA and Olson EN: A threshold of GATA4 and GATA6 expression is required for cardiovascular development. Proc Natl Acad Sci USA. 103:11189–11194. 2006. View Article : Google Scholar : PubMed/NCBI | |
Pu WT, Ishiwata T, Juraszek AL, Ma Q and Izumo S: GATA4 is a dosage-sensitive regulator of cardiac morphogenesis. Dev Biol. 275:235–244. 2004. View Article : Google Scholar : PubMed/NCBI | |
Wu G, Shan J, Pang S, Wei X, Zhang H and Yan B: Genetic analysis of the promoter region of the GATA4 gene in patients with ventricular septal defects. Transl Res. 159:376–382. 2012. View Article : Google Scholar : PubMed/NCBI | |
Huang WY, Heng HH and Liew CC: Assignment of the human GATA4 gene to 8p23.1->p22 using fluorescence in situ hybridization analysis. Cytogenet Cell Genet. 72:217–218. 1996. View Article : Google Scholar : PubMed/NCBI | |
White RA, Dowler LL, Pasztor LM, Gatson LL, Adkison LR, Angeloni SV and Wilson DB: Assignment of the transcription factor GATA4 gene to human chromosome 8 and mouse chromosome 14: Gata4 is a candidate gene for Ds (disorganization). Genomics. 27:20–26. 1995. View Article : Google Scholar : PubMed/NCBI | |
Ohara Y, Atarashi T, Ishibashi T, Ohashi-Kobayashi A and Maeda M: GATA-4 gene organization and analysis of its promoter. Biol Pharm Bull. 29:410–419. 2006. View Article : Google Scholar : PubMed/NCBI | |
Liang W, Guo J, Li J, Bai C and Dong Y: Downregulation of miR-122 attenuates hypoxia/reoxygenation (H/R)-induced myocardial cell apoptosis by upregulating GATA-4. Biochem Biophys Res Commun. 478:1416–1422. 2016. View Article : Google Scholar : PubMed/NCBI | |
Mehta G, Kumarasamy S, Wu J, Walsh A, Liu L, Williams K, Joe B and de la Serna IL: MITF interacts with the SWI/SNF subunit, BRG1, to promote GATA4 expression in cardiac hypertrophy. J Mol Cell Cardiol. 88:101–110. 2015. View Article : Google Scholar : PubMed/NCBI | |
Rojas A, De Val S, Heidt AB, Xu SM, Bristow J and Black BL: Gata4 expression in lateral mesoderm is downstream of BMP4 and is activated directly by Forkhead and GATA transcription factors through a distal enhancer element. Development. 132:3405–3417. 2005. View Article : Google Scholar : PubMed/NCBI | |
Si L, Shi J, Gao W, Zheng M, Liu L, Zhu J and Tian J: Smad4 mediated BMP2 signal is essential for the regulation of GATA4 and Nkx2.5 by affecting the histone H3 acetylation in H9c2 cells. Biochem Biophys Res Commun. 450:81–86. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhou C, Cui Q, Su G, Guo X, Liu X and Zhang J: MicroRNA-208b alleviates post-infarction myocardial fibrosis in a rat model by inhibiting GATA4. Med Sci Monit. 22:1808–1816. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kontaraki JE, Kochiadakis GE, Marketou ME, Chlouverakis G, Igoumenidis NE, Saloustros IG and Vardas PE: Early cardiac gene transcript levels in peripheral blood mononuclear cells reflect severity in stable coronary artery disease. Hellenic J Cardiol. 55:119–125. 2014.PubMed/NCBI | |
Durocher D, Charron F, Warren R, Schwartz RJ and Nemer M: The cardiac transcription factors Nkx2-5 and GATA-4 are mutual cofactors. EMBO J. 16:5687–5696. 1997. View Article : Google Scholar : PubMed/NCBI | |
Hasegawa K, Lee SJ, Jobe SM, Markham BE and Kitsis RN: cis-Acting sequences that mediate induction of beta-myosin heavy chain gene expression during left ventricular hypertrophy due to aortic constriction. Circulation. 96:3943–3953. 1997. View Article : Google Scholar : PubMed/NCBI | |
Huang WY, Cukerman E and Liew CC: Identification of a GATA motif in the cardiac alpha-myosin heavy-chain-encoding gene and isolation of a human GATA-4 cDNA. Gene. 155:219–223. 1995. View Article : Google Scholar : PubMed/NCBI | |
Molkentin JD, Kalvakolanu DV and Markham BE: Transcription factor GATA-4 regulates cardiac muscle-specific expression of the alpha-myosin heavy-chain gene. Mol Cell Biol. 14:4947–4957. 1994. View Article : Google Scholar : PubMed/NCBI | |
Linhares VL, Almeida NA, Menezes DC, Elliott DA, Lai D, Beyer EC, Campos de Carvalho AC and Costa MW: Transcriptional regulation of the murine Connexin40 promoter by cardiac factors Nkx2-5, GATA4 and Tbx5. Cardiovasc Res. 64:402–411. 2004. View Article : Google Scholar : PubMed/NCBI | |
Gallagher JM, Yamak A, Kirilenko P, Black S, Bochtler M, Lefebvre C, Nemer M and Latinkić BV: Carboxy terminus of GATA4 transcription factor is required for its cardiogenic activity and interaction with CDK4. Mech Dev. 134:31–41. 2014. View Article : Google Scholar : PubMed/NCBI | |
Rojas A, Kong SW, Agarwal P, Gilliss B, Pu WT and Black BL: GATA4 is a direct transcriptional activator of cyclin D2 and Cdk4 and is required for cardiomyocyte proliferation in anterior heart field-derived myocardium. Mol Cell Biol. 28:5420–5431. 2008. View Article : Google Scholar : PubMed/NCBI | |
Yamak A, Latinkic BV, Dali R, Temsah R and Nemer M: Cyclin D2 is a GATA4 cofactor in cardiogenesis. Proc Natl Acad Sci USA. 111:1415–1420. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lee Y, Shioi T, Kasahara H, Jobe SM, Wiese RJ, Markham BE and Izumo S: The cardiac tissue-restricted homeobox protein Csx/Nkx2.5 physically associates with the zinc finger protein GATA4 and cooperatively activates atrial natriuretic factor gene expression. Mol Cell Biol. 18:3120–3129. 1998. View Article : Google Scholar : PubMed/NCBI | |
Brown CO III, Chi X, Garcia-Gras E, Shirai M, Feng XH and Schwartz RJ: The cardiac determination factor, Nkx2-5, is activated by mutual cofactors GATA-4 and Smad1/4 via a novel upstream enhancer. J Biol Chem. 279:10659–10669. 2004. View Article : Google Scholar : PubMed/NCBI | |
Laforest B and Nemer M: GATA5 interacts with GATA4 and GATA6 in outflow tract development. Dev Biol. 358:368–378. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ang YS, Rivas RN, Ribeiro AJS, Srivas R, Rivera J, Stone NR, Pratt K, Mohamed TMA, Fu JD, Spencer CI, et al: Disease model of GATA4 mutation reveals transcription factor cooperativity in human cardiogenesis. Cell. 167:1734–1749.e22. 2016. View Article : Google Scholar : PubMed/NCBI | |
Maitra M, Schluterman MK, Nichols HA, Richardson JA, Lo CW, Srivastava D and Garg V: Interaction of Gata4 and Gata6 with Tbx5 is critical for normal cardiac development. Dev Biol. 326:368–377. 2009. View Article : Google Scholar : PubMed/NCBI | |
Luna-Zurita L, Stirnimann CU, Glatt S, Kaynak BL, Thomas S, Baudin F, Samee MA, He D, Small EM, Mileikovsky M, et al: Complex interdependence regulates heterotypic transcription factor distribution and coordinates cardiogenesis. Cell. 164:999–1014. 2016. View Article : Google Scholar : PubMed/NCBI | |
Dai YS, Cserjesi P, Markham BE and Molkentin JD: The transcription factors GATA4 and dHAND physically interact to synergistically activate cardiac gene expression through a p300-dependent mechanism. J Biol Chem. 277:24390–24398. 2002. View Article : Google Scholar : PubMed/NCBI | |
Dai YS and Markham BE: p300 Functions as a coactivator of transcription factor GATA-4. J Biol Chem. 276:37178–37185. 2001. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Wang X, Zhu H, Zhu C, Wang Y, Pu WT, Jegga AG and Fan GC: Synergistic effects of the GATA-4-mediated miR-144/451 cluster in protection against simulated ischemia/reperfusion-induced cardiomyocyte death. J Mol Cell Cardiol. 49:841–850. 2010. View Article : Google Scholar : PubMed/NCBI | |
Glenn DJ, Rahmutula D, Nishimoto M, Liang F and Gardner DG: Atrial natriuretic peptide suppresses endothelin gene expression and proliferation in cardiac fibroblasts through a GATA4-dependent mechanism. Cardiovasc Res. 84:209–217. 2009. View Article : Google Scholar : PubMed/NCBI | |
Molkentin JD, Lu JR, Antos CL, Markham B, Richardson J, Robbins J, Grant SR and Olson EN: A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell. 93:215–228. 1998. View Article : Google Scholar : PubMed/NCBI | |
Morimoto T, Hasegawa K, Wada H, Kakita T, Kaburagi S, Yanazume T and Sasayama S: Calcineurin-GATA4 pathway is involved in beta-adrenergic agonist-responsive endothelin-1 transcription in cardiac myocytes. J Biol Chem. 276:34983–34989. 2001. View Article : Google Scholar : PubMed/NCBI | |
Morin S, Charron F, Robitaille L and Nemer M: GATA-dependent recruitment of MEF2 proteins to target promoters. EMBO J. 19:2046–2055. 2000. View Article : Google Scholar : PubMed/NCBI | |
Kolettis TM, Barton M, Langleben D and Matsumura Y: Endothelin in coronary artery disease and myocardial infarction. Cardiol Rev. 21:249–256. 2013. View Article : Google Scholar : PubMed/NCBI |