1
|
Jiang X, Sun Q, Li H, Li K and Ren X: The
role of phosphoglycerate mutase 1 in tumor aerobic glycolysis and
its potential therapeutic implications. Int J Cancer.
135:1991–1996. 2014. View Article : Google Scholar : PubMed/NCBI
|
2
|
Jacobowitz DM, Jozwik C, Fukuda T and
Pollard HB: Immunohistochemical localization of phosphoglycerate
mutase in capillary endothelium of the brain and periphery.
Microvasc Res. 76:89–93. 2008. View Article : Google Scholar : PubMed/NCBI
|
3
|
Betrán E, Wang W, Jin L and Long M:
Evolution of the phosphoglycerate mutase processed gene in human
and chimpanzee revealing the origin of a new primate gene. Mol Biol
Evol. 19:654–663. 2002. View Article : Google Scholar : PubMed/NCBI
|
4
|
Gao H, Yu B, Yan Y, Shen J, Zhao S, Zhu J,
Qin W and Gao Y: Correlation of expression levels of ANXA2, PGAM1,
and CALR with glioma grade and prognosis. J Neurosurg. 118:846–853.
2013. View Article : Google Scholar : PubMed/NCBI
|
5
|
Bührens RI, Amelung JT, Reymond MA and
Beshay M: Protein expression in human non-small cell lung cancer: A
systematic database. Pathobiology. 76:277–285. 2009. View Article : Google Scholar : PubMed/NCBI
|
6
|
Durany N, Joseph J, Jimenez OM, Climent F,
Fernández PL, Rivera F and Carreras J: Phosphoglycerate mutase,
2,3-bisphosphoglycerate phosphatase, creatine kinase and enolase
activity and isoenzymes in breast carcinoma. Br J Cancer. 82:20–27.
2000. View Article : Google Scholar : PubMed/NCBI
|
7
|
Turhani D, Krapfenbauer K, Thurnher D,
Langen H and Fountoulakis M: Identification of differentially
expressed, tumor-associated proteins in oral squamous cell
carcinoma by proteomic analysis. Electrophoresis. 27:1417–1423.
2006. View Article : Google Scholar : PubMed/NCBI
|
8
|
Ren F, Wu H, Lei Y, Zhang H, Liu R, Zhao
Y, Chen X, Zeng D, Tong A, Chen L, et al: Quantitative proteomics
identification of phosphoglycerate mutase 1 as a novel therapeutic
target in hepatocellular carcinoma. Mol Cancer. 9:812010.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Peng XC, Gong FM, Chen Y, Qiu M, Cheng K,
Tang J, Ge J, Chen N, Zeng H and Liu JY: Proteomics identification
of PGAM1 as a potential therapeutic target for urothelial bladder
cancer. J Proteomics. 132:85–92. 2016. View Article : Google Scholar : PubMed/NCBI
|
10
|
Xu Z, Gong J, Wang C, Wang Y, Song Y, Xu
W, Liu Z and Liu Y: The diagnostic value and functional roles of
phosphoglycerate mutase 1 in glioma. Oncol Rep. 36:2236–2244. 2016.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Zhang D, Jin N, Sun W, Li X, Liu B, Xie Z,
Qu J, Xu J, Yang X, Su Y, et al: Phosphoglycerate mutase 1 promotes
cancer cell migration independent of its metabolic activity.
Oncogene. 36:2900–2909. 2017. View Article : Google Scholar : PubMed/NCBI
|
12
|
Zhang D, Wu H, Zhang X, Ding X, Huang M,
Geng M, Li H and Xie Z: Phosphoglycerate mutase 1 predicts the poor
prognosis of oral squamous cell carcinoma and is associated with
cell migration. J Cancer. 8:1943–1951. 2017. View Article : Google Scholar : PubMed/NCBI
|
13
|
Qu J, Sun W, Zhong J, Lv H, Zhu M, Xu J,
Jin N, Xie Z, Tan M, Lin SH, et al: Phosphoglycerate mutase 1
regulates dNTP pool and promotes homologous recombination repair in
cancer cells. J Cell Biol. 216:409–424. 2017. View Article : Google Scholar : PubMed/NCBI
|
14
|
Kimura A, Sakurai T, Koumura A, Yamada M,
Hayashi Y, Tanaka Y, Hozumi I, Tanaka R, Takemura M, Seishima M and
Inuzuka T: High prevalence of autoantibodies against
phosphoglycerate mutase 1 in patients with autoimmune central
nervous system diseases. J Neuroimmunol. 219:105–108. 2010.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Zhang S, Zhao Y, Lei B, Li C and Mao X:
PGAM1 is Involved in spermatogenic dysfunction and affects cell
proliferation, apoptosis, and migration. Reprod Sci. 22:1236–1242.
2015. View Article : Google Scholar : PubMed/NCBI
|
16
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Lei B, Zhou X, Lv D, Wan B, Wu H, Zhong L,
Shu F and Mao X: Apoptotic and nonapoptotic function of caspase 7
in spermatogenesis. Asian J Androl. 19:47–51. 2017.PubMed/NCBI
|
18
|
Robin G, Boitrelle F, Leroy X, Peers MC,
Marcelli F, Rigot JM and Mitchell V: Assessment of azoospermia and
histological evaluation of spermatogenesis. Ann Pathol. 30:182–195.
2010.(In French). View Article : Google Scholar : PubMed/NCBI
|
19
|
Cheng YS, Lu CW, Lin TY, Lin PY and Lin
YM: Causes and clinical features of infertile men with
nonobstructive azoospermia and histopathologic diagnosis of
hypospermatogenesis. Urology. 105:62–68. 2017. View Article : Google Scholar : PubMed/NCBI
|
20
|
Takagi S, Itoh N, Kimura M, Sasao T and
Tsukamoto T: Spermatogonial proliferation and apoptosis in
hypospermatogenesis associated with nonobstructive azoospermia.
Fertil Steril. 76:901–907. 2001. View Article : Google Scholar : PubMed/NCBI
|
21
|
Jaiswal D, Trivedi S, Agrawal NK and Singh
K: Dysregulation of apoptotic pathway candidate genes and proteins
in infertile azoospermia patients. Fertil Steril. 104:736–743.e6.
2015. View Article : Google Scholar : PubMed/NCBI
|
22
|
Hegazy R, Hegazy A, Ammar M and Salem E:
Immunohistochemical measurement and expression of Mcl-1 in
infertile testes. Front Med. 9:361–367. 2015. View Article : Google Scholar : PubMed/NCBI
|
23
|
Han K, Seo HW, Oh Y, Kang I, Park C, Han
JH, Kim SH and Chae C: Pathogenesis of type 1 (European genotype)
porcine reproductive and respiratory syndrome virus in male gonads
of infected boar. Vet Res Commun. 37:155–162. 2013. View Article : Google Scholar : PubMed/NCBI
|
24
|
Napoletano F, Gibert B, Yacobi-Sharon K,
Vincent S, Favrot C, Mehlen P, Girard V, Teil M, Chatelain G,
Walter L, et al: p53-dependent programmed necrosis controls germ
cell homeostasis during spermatogenesis. PLoS Genet.
13:e10070242017. View Article : Google Scholar : PubMed/NCBI
|
25
|
Li T, Liu X, Jiang L, Manfredi J, Zha S
and Gu W: Loss of p53-mediated cell-cycle arrest, senescence and
apoptosis promotes genomic instability and premature aging.
Oncotarget. 7:11838–11849. 2016.PubMed/NCBI
|
26
|
Duan P, Hu C, Butler HJ, Quan C, Chen W,
Huang W, Tang S, Zhou W, Yuan M, Shi Y, et al: 4-Nonylphenol
induces disruption of spermatogenesis associated with oxidative
stress-related apoptosis by targeting p53-Bcl-2/Bax-Fas/FasL
signaling. Environ Toxicol. 32:739–753. 2017. View Article : Google Scholar : PubMed/NCBI
|
27
|
Chen D, Zheng W, Lin A, Uyhazi K, Zhao H
and Lin H: Pumilio 1 suppresses multiple activators of p53 to
safeguard spermatogenesis. Curr Biol. 22:420–425. 2012. View Article : Google Scholar : PubMed/NCBI
|
28
|
Zhao Y, Tan Y, Dai J, Li B, Guo L, Cui J,
Wang G, Shi X, Zhang X, Mellen N, et al: Exacerbation of
diabetes-induced testicular apoptosis by zinc deficiency is most
likely associated with oxidative stress, p38 MAPK activation, and
p53 activation in mice. Toxicol Lett. 200:100–106. 2011. View Article : Google Scholar : PubMed/NCBI
|
29
|
Logue SE and Martin SJ: Caspase activation
cascades in apoptosis. Biochem Soc Trans. 36:1–9. 2008. View Article : Google Scholar : PubMed/NCBI
|
30
|
Das J, Ghosh J, Manna P and Sil PC:
Taurine protects rat testes against doxorubicin-induced oxidative
stress as well as p53, Fas and caspase 12-mediated apoptosis. Amino
Acids. 42:1839–1855. 2012. View Article : Google Scholar : PubMed/NCBI
|