1
|
Halliday BP, Baksi AJ, Gulati A, Ali A,
Newsome S, Izgi C, Arzanauskaite M, Lota A, Tayal U, Vassiliou VS,
et al: Outcome in dilated cardiomyopathy related to the extent,
location, and pattern of late gadolinium enhancement. JACC
Cardiovasc Imaging. Sep 6–2018.(Epub ahead of print). doi:
10.1016/j.jcmg.2018.07.015. View Article : Google Scholar : PubMed/NCBI
|
2
|
Salerno M and Robinson AA: Risk
stratification in nonischemic dilated cardiomyopathy in the era of
personalized medicine: Can cardiac magnetic resonance with late
gadolinium imaging ‘enhance’ our strategy? JACC Cardiovasc Imaging.
11:1285–1287. 2018. View Article : Google Scholar : PubMed/NCBI
|
3
|
Yancy CW, Jessup M, Bozkurt B, Butler J,
Casey DE Jr, Colvin MM, Drazner MH, Filippatos GS, Fonarow GC,
Givertz MM, et al: 2017 ACC/AHA/HFSA Focused Update of the 2013
ACCF/AHA Guideline for the Management of Heart Failure: A Report of
the American College of Cardiology/American Heart Association Task
Force on Clinical Practice Guidelines and the Heart Failure Society
of America. Circulation. 136:e137–e161. 2017. View Article : Google Scholar : PubMed/NCBI
|
4
|
Garfinkel AC, Seidman JG and Seidman CE:
Genetic pathogenesis of hypertrophic and dilated cardiomyopathy.
Heart Fail Clin. 14:139–146. 2018. View Article : Google Scholar : PubMed/NCBI
|
5
|
Harakalova M and Asselbergs FW: Systems
analysis of dilated cardiomyopathy in the next generation
sequencing era. Wiley Interdiscip Rev Syst Biol Med. 10:e14192018.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Merlo M, Cannatà A, Gobbo M, Stolfo D,
Elliott PM and Sinagra G: Evolving concepts in dilated
cardiomyopathy. Eur J Heart Fail. 20:228–239. 2018. View Article : Google Scholar : PubMed/NCBI
|
7
|
Thum T and Condorelli G: Long noncoding
RNAs and microRNAs in cardiovascular pathophysiology. Circ Res.
116:751–762. 2015. View Article : Google Scholar : PubMed/NCBI
|
8
|
Cabili MN, Trapnell C, Goff L, Koziol M,
Tazon-Vega B, Regev A and Rinn JL: Integrative annotation of human
large intergenic noncoding RNAs reveals global properties and
specific subclasses. Genes Dev. 25:1915–1927. 2011. View Article : Google Scholar : PubMed/NCBI
|
9
|
Eades G, Zhang YS, Li QL, Xia JX, Yao Y
and Zhou Q: Long non-coding RNAs in stem cells and cancer. World J
Clin Oncol. 5:134–141. 2014. View Article : Google Scholar : PubMed/NCBI
|
10
|
Zhang Y, Li Y, Wang J and Lei P: Long
noncoding RNA ferritin heavy polypeptide 1 pseudogene 3 controls
glioma cell proliferation and apoptosis via regulation of the
microRNA-224-5p/tumor protein D52 axis. Mol Med Rep. 18:4239–4246.
2018.PubMed/NCBI
|
11
|
Lorenzen JM, Martino F and Thum T:
Epigenetic modifications in cardiovascular disease. Basic Res
Cardiol. 107:2452012. View Article : Google Scholar : PubMed/NCBI
|
12
|
Ounzain S, Crippa S and Pedrazzini T:
Small and long non-coding RNAs in cardiac homeostasis and
regeneration. Biochim Biophys Acta. 1833:923–933. 2013. View Article : Google Scholar : PubMed/NCBI
|
13
|
Calore M, De Windt LJ and Rampazzo A:
Genetics meets epigenetics: Genetic variants that modulate
noncoding RNA in cardiovascular diseases. J Mol Cell Cardiol.
89:27–34. 2015. View Article : Google Scholar : PubMed/NCBI
|
14
|
Xie Z, Xia W and Hou M: Long intergenic
noncoding RNA-p21 mediates cardiac senescence via the Wnt/β-catenin
signaling pathway in doxorubicin-induced cardiotoxicity. Mol Med
Rep. 17:2695–2704. 2018.PubMed/NCBI
|
15
|
Yang KC, Yamada KA, Patel AY, Topkara VK,
George I, Cheema FH, Ewald GA, Mann DL and Nerbonne JM: Deep RNA
sequencing reveals dynamic regulation of myocardial noncoding RNAs
in failing human heart and remodeling with mechanical circulatory
support. Circulation. 129:1009–1021. 2014. View Article : Google Scholar : PubMed/NCBI
|
16
|
Huang ZP, Ding Y, Chen J, Wu G, Kataoka M,
Hu Y, Yang JH, Liu J, Drakos SG, Selzman CH, et al: Long non-coding
RNAs link extracellular matrix gene expression to ischemic
cardiomyopathy. Cardiovasc Res. 112:543–554. 2016. View Article : Google Scholar : PubMed/NCBI
|
17
|
Liu R, Liao X, Li X, Wei H, Liang Q, Zhang
Z, Yin M, Zeng X, Liang Z and Hu C: Expression profiles of long
noncoding RNAs and mRNAs in post-cardiac arrest rat brains. Mol Med
Rep. 17:6413–6424. 2018.PubMed/NCBI
|
18
|
Taichman DB, McGoon MD, Harhay MO,
Archer-Chicko C, Sager JS, Murugappan M, Chakinali MM, Palevsky HI
and Gallop R: Wide variation in clinicians' assessment of New York
Heart Association/World Health Organization functional class in
patients with pulmonary arterial hypertension. Mayo Clin Proc.
84:586–592. 2009. View
Article : Google Scholar : PubMed/NCBI
|
19
|
Maron BJ, Towbin JA, Thiene G,
Antzelevitch C, Corrado D, Arnett D, Moss AJ, Seidman CE and Young
JB; American Heart Association; Council on ClinicalCardiology,
Heart Failure and Transplantation Committee; Quality of Care and
Outcomes Research and Functional Genomics and Translational
BiologyInterdisciplinary Working Groups; Council on Epidemiology
and Prevention, : Contemporary definitions and classification of
the cardiomyopathies: An American Heart Association Scientific
Statement from the Council on Clinical Cardiology, Heart Failure
and Transplantation Committee; Quality of Care and Outcomes
Research and Functional Genomics and Translational Biology
Interdisciplinary Working Groups; and Council on Epidemiology and
Prevention. Circulation. 113:1807–1816. 2006. View Article : Google Scholar : PubMed/NCBI
|
20
|
WRITING COMMITTEE MEMBERS, Yancy CW,
Jessup M, Bozkurt B, Butler J, Casey DE Jr, Drazner MH, Fonarow GC,
Geraci SA, Horwich T, et al: 2013 ACCF/AHA guideline for the
management of heart failure: A report of the American College of
Cardiology Foundation/American Heart Association Task Force on
practice guidelines. Circulation. 128:e240–e327. 2013.PubMed/NCBI
|
21
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Yang W, Han Y, Yang C, Chen Y, Zhao W, Su
X, Yang K and Jin W: MicroRNA-19b-1 reverses ischaemia-induced
heart failure by inhibiting cardiomyocyte apoptosis and targeting
Bcl2 l11/BIM. Heart Vessels. Jan 3–2019.(Epub ahead of print). doi:
10.1007/s00380-018-01336-3. View Article : Google Scholar
|
23
|
Haeussler M, Zweig AS, Tyner C, Speir ML,
Rosenbloom KR, Raney BJ, Lee CM, Lee BT, Hinrichs AS, Gonzalez JN,
et al: The UCSC Genome Browser database: 2019 update. Nucleic Acids
Res. 47:D853–D858. 2019. View Article : Google Scholar : PubMed/NCBI
|
24
|
Kent WJ: BLAT-the BLAST-like alignment
tool. Genome Res. 12:656–664. 2002. View Article : Google Scholar : PubMed/NCBI
|
25
|
Huang da W, Sherman BT and Lempicki RA:
Systematic and integrative analysis of large gene lists using DAVID
bioinformatics resources. Nat Protoc. 4:44–57. 2009. View Article : Google Scholar : PubMed/NCBI
|
26
|
Fatica A and Bozzoni I: Long non-coding
RNAs: New players in cell differentiation and development. Nat Rev
Genet. 15:7–21. 2014. View
Article : Google Scholar : PubMed/NCBI
|
27
|
Yang N, Chen J, Zhang H, Wang X, Yao H,
Peng Y and Zhang W: lncRNA OIP5-AS1 loss-induced microRNA-410
accumulation regulates cell proliferation and apoptosis by
targeting KLF10 via activating PTEN/PI3K/AKT pathway in multiple
myeloma. Cell Death Dis. 8:e29752017. View Article : Google Scholar : PubMed/NCBI
|
28
|
Cajigas I, Leib DE, Cochrane J, Luo H,
Swyter KR, Chen S, Clark BS, Thompson J, Yates JR III, Kingston RE
and Kohtz JD: Evf2 lncRNA/BRG1/DLX1 interactions reveal
RNA-dependent inhibition of chromatin remodeling. Development.
142:2641–2652. 2015. View Article : Google Scholar : PubMed/NCBI
|
29
|
Wang R, Shi Y, Chen L, Jiang Y, Mao C, Yan
B, Liu S, Shan B, Tao Y and Wang X: The ratio of FoxA1 to FoxA2 in
lung adenocarcinoma is regulated by lncRNA HOTAIR and chromatin
remodeling factor LSH. Sci Rep. 5:178262015. View Article : Google Scholar : PubMed/NCBI
|
30
|
Devaux Y, Zangrando J, Schroen B, Creemers
EE, Pedrazzini T, Chang CP, Dorn GW II, Thum T and Heymans S;
Cardiolinc network, : Long noncoding RNAs in cardiac development
and ageing. Nat Rev Cardiol. 12:415–425. 2015. View Article : Google Scholar : PubMed/NCBI
|
31
|
Gao L, Liu Y, Guo S, Yao R, Wu L, Xiao L,
Wang Z, Liu Y and Zhang Y: Circulating long noncoding RNA HOTAIR is
an essential mediator of acute myocardial infarction. Cell Physiol
Biochem. 44:1497–1508. 2017.PubMed/NCBI
|
32
|
Zhang Y, Zhang M, Xu W, Chen J and Zhou X:
The long non-coding RNA H19 promotes cardiomyocyte apoptosis in
dilated cardiomyopathy. Oncotarget. 8:28588–28594. 2017.PubMed/NCBI
|
33
|
Wang K, Long B, Zhou LY, Liu F, Zhou QY,
Liu CY, Fan YY and Li PF: CARL lncRNA inhibits anoxia-induced
mitochondrial fission and apoptosis in cardiomyocytes by impairing
miR-539-dependent PHB2 downregulation. Nat Commun. 5:35962014.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Ounzain S, Micheletti R, Beckmann T,
Schroen B, Alexanian M, Pezzuto I, Crippa S, Nemir M, Sarre A,
Johnson R, et al: Genome-wide profiling of the cardiac
transcriptome after myocardial infarction identifies novel
heart-specific long non-coding RNAs. Eur Heart J. 36:353–368a.
2015. View Article : Google Scholar : PubMed/NCBI
|
35
|
Fatkin D, Seidman CE and Seidman JG:
Genetics and disease of ventricular muscle. Cold Spring Harb
Perspect Med. 4:a0210632014. View Article : Google Scholar : PubMed/NCBI
|
36
|
Burke MA, Cook SA, Seidman JG and Seidman
CE: Clinical and mechanistic insights into the genetics of
cardiomyopathy. J Am Coll Cardiol. 68:2871–2886. 2016. View Article : Google Scholar : PubMed/NCBI
|
37
|
Herman DS, Lam L, Taylor MR, Wang L,
Teekakirikul P, Christodoulou D, Conner L, DePalma SR, McDonough B,
Sparks E, et al: Truncations of titin causing dilated
cardiomyopathy. N Eng J Med. 366:619–628. 2012. View Article : Google Scholar
|
38
|
Muelas N, Hackman P, Luque H,
Garcés-Sánchez M, Azorín I, Suominen T, Sevilla T, Mayordomo F,
Gómez L, Martí P, et al: MYH7 gene tail mutation causing myopathic
profiles beyond Laing distal myopathy. Neurology. 75:732–741. 2010.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Eilebrecht S, Benecke BJ and Benecke AG:
Latent HIV-1 TAR regulates 7SK-responsive P-TEFb target genes and
targets cellular immune responses in the absence of Tat. Genomics
Proteomics Bioinformatics. 15:313–323. 2017. View Article : Google Scholar : PubMed/NCBI
|