1
|
Fang Y, Yu X, Liu Y, Kriegel AJ, Heng Y,
Xu X, Liang M and Ding X: miR-29c is downregulated in renal
interstitial fibrosis in humans and rats and restored by HIF-alpha
activation. Am J Physiol Renal Physiol. 304:F1274–F1282. 2013.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Boor P, Ostendorf T and Floege J: Renal
fibrosis: novel insights into mechanisms and therapeutic targets.
Nat Rev Nephrol. 6:643–656. 2010. View Article : Google Scholar : PubMed/NCBI
|
3
|
Sun D, Feng J, Dai C, Sun L, Jin T, Ma J
and Wang L: Role of peritubular capillary loss and hypoxia in
progressive tubulointerstitial fibrosis in a rat model of
aristolochic acid nephropathy. Am J Nephrol. 26:363–371. 2006.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Kang DH, Hughes J, Mazzali M, Schreiner GF
and Johnson RJ: Impaired angiogenesis in the remnant kidney model:
II. Vascular endothelial growth factor administration reduces renal
fibrosis and stabilizes renal function. J Am Soc Nephrol.
12:1448–1457. 2001.PubMed/NCBI
|
5
|
Babickova J, Klinkhammer BM, Buhl EM,
Djudjaj S, Hoss M, Heymann F, Tacke F, Floege J, Becker JU and Boor
P: Regardless of etiology, progressive renal disease causes
ultrastructural and functional alterations of peritubular
capillaries. Kidney Int. 91:70–85. 2017. View Article : Google Scholar : PubMed/NCBI
|
6
|
Lee JY, Song SH, Kim YS, Lim BJ, Kim SI,
Kim MS and Jeong HJ: Tubuloreticular inclusions in peritubular
capillaries of renal allografts. Pathol Res Pract. 213:1185–1190.
2017. View Article : Google Scholar : PubMed/NCBI
|
7
|
Boor P, Babickova J, Steegh F, Hautvast P,
Martin IV, Djudjaj S, Nakagawa T, Ehling J, Gremse F, Bücher E, et
al: Role of platelet-derived growth factor-CC in capillary
rarefaction in renal fibrosis. Am J Pathol. 185:2132–2142. 2015.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Bohle A, von Gise H, Mackensen-Haen S and
Stark-Jakob B: The obliteration of the postglomerular capillaries
and its influence upon the function of both glomeruli and tubuli.
Functional interpretation of morphologic findings. Klin Wochenschr.
59:1043–1051. 1981. View Article : Google Scholar : PubMed/NCBI
|
9
|
Fine LG, Orphanides C and Norman JT:
Progressive renal disease: the chronic hypoxia hypothesis. Kidney
Int. (Suppl 65):S74–S78. 1998.
|
10
|
Venkatachalam MA, Weinberg JM, Kriz W and
Bidani AK: Failed tubule recovery, AKI-CKD transition, and kidney
disease progression. J Am Soc Nephrol. 26:1765–1776. 2015.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Tanaka T and Nangaku M: Angiogenesis and
hypoxia in the kidney. Nat Rev Nephrol. 9:211–222. 2013. View Article : Google Scholar : PubMed/NCBI
|
12
|
Kida Y, Tchao BN and Yamaguchi I:
Peritubular capillary rarefaction: a new therapeutic target in
chronic kidney disease. Pediatr Nephrol. 29:333–342. 2014.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Reinders ME, Rabelink TJ and Briscoe DM:
Angiogenesis and endothelial cell repair in renal disease and
allograft rejection. J Am Soc Nephrol. 17:932–942. 2006. View Article : Google Scholar : PubMed/NCBI
|
14
|
Mayer G: Capillary rarefaction, hypoxia,
VEGF and angiogenesis in chronic renal disease. Nephrol Dial
Transplant. 26:1132–1137. 2011. View Article : Google Scholar : PubMed/NCBI
|
15
|
Failla CM, Carbo M and Morea V: Positive
and negative regulation of angiogenesis by soluble vascular
endothelial growth factor receptor-1. Int J Mol Sci. 19(pii):
E13062018. View Article : Google Scholar : PubMed/NCBI
|
16
|
Nangaku M and Eckardt KU: Hypoxia and the
HIF system in kidney disease. J Mol Med (Berl). 85:1325–1330. 2007.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Hugo C: The thrombospondin 1-TGF-beta axis
in fibrotic renal disease. Nephrol Dial Transplant. 18:1241–1245.
2003. View Article : Google Scholar : PubMed/NCBI
|
18
|
Xue Y, Qu Z, Fu J, Zhen J, Wang W and Cai
Y: The protective effect of astaxanthin on learning and memory
deficits and oxidative stress in a mouse model of repeated cerebral
ischemia/reperfusion. Brain Res Bull. 131:221–228. 2017. View Article : Google Scholar : PubMed/NCBI
|
19
|
Park JS, Chyun JH, Kim YK, Line LL and
Chew BP: Astaxanthin decreased oxidative stress and inflammation
and enhanced immune response in humans. Nutr Metab (Lond).
7:182010. View Article : Google Scholar : PubMed/NCBI
|
20
|
Ni X, Yu H, Wang S, Zhang C and Shen S:
Astaxanthin inhibits PC-3 ×enograft prostate tumor growth in nude
mice. Mar Drugs. 15(pii): E662017. View Article : Google Scholar : PubMed/NCBI
|
21
|
Komatsu T, Sasaki S, Manabe Y, Hirata T
and Sugawara T: Preventive effect of dietary astaxanthin on
UVA-induced skin photoaging in hairless mice. PLoS One.
12:e01711782017. View Article : Google Scholar : PubMed/NCBI
|
22
|
Kanazashi M, Okumura Y, Al-Nassan S,
Murakami S, Kondo H, Nagatomo F, Fujita N, Ishihara A, Roy RR and
Fujino H: Protective effects of astaxanthin on capillary regression
in atrophied soleus muscle of rats. Acta Physiol (Oxf).
207:405–415. 2013. View Article : Google Scholar : PubMed/NCBI
|
23
|
Liu G, Shi Y, Peng X, Liu H, Peng Y and He
L: Astaxanthin attenuates adriamycin-induced focal segmental
glomerulosclerosis. Pharmacology. 95:193–200. 2015. View Article : Google Scholar : PubMed/NCBI
|
24
|
Xie C, Meng M, Yin X, He F, Ye H and Xie
D: Effects of astaxanthin on renal fibrosis and cell apoptosis
induced by partial unilateral ureteral obstruction in rats. Nan
Fang Yi Ke Da Xue Xue Bao. 33:305–308. 2013.(In Chinese).
PubMed/NCBI
|
25
|
Stroo I, Emal D, Butter LM, Teske GJ,
Claessen N, Dessing MC, Girardin SE, Florquin S and Leemans JC: No
difference in renal injury and fibrosis between wild-type and
NOD1/NOD2 double knockout mice with chronic kidney disease induced
by ureteral obstruction. BMC Nephrol. 19:782018. View Article : Google Scholar : PubMed/NCBI
|
26
|
Zhao YN, Xu GJ and Yang P: GBP1 exerts
inhibitory effects on acute viral myocarditis through the
inhibition of inflammatory response of macrophage in mice. Biochem
Cell Biol. Dec 17–2018.(Epub ahead of print). View Article : Google Scholar :
|
27
|
Chiang CK, Sheu ML, Lin YW, Wu CT, Yang
CC, Chen MW, Hung KY, Wu KD and Liu SH: Honokiol ameliorates renal
fibrosis by inhibiting extracellular matrix and pro-inflammatory
factors in vivo and in vitro. Br J Pharmacol. 163:586–597. 2011.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Chen Q, Tao J, Li G, Zheng D, Tan Y, Li R,
Tian L, Li Z, Cheng H and Xie X: Astaxanthin ameliorates
experimental diabetes-induced renal oxidative stress and
fibronectin by upregulating connexin43 in glomerular mesangial
cells and diabetic mice. Eur J Pharmacol. 840:33–43. 2018.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Liu B, Ding F, Hu D, Zhou Y, Long C, Shen
L, Zhang Y, Zhang D and Wei G: Human umbilical cord mesenchymal
stem cell conditioned medium attenuates renal fibrosis by reducing
inflammation and epithelial-to-mesenchymal transition via the
TLR4/NF-κB signaling pathway in vivo and in vitro. Stem Cell Res
Ther. 9:72018. View Article : Google Scholar : PubMed/NCBI
|
31
|
Hu N, Duan J, Li H, Wang Y, Wang F, Chu J,
Sun J, Liu M, Wang C, Lu C and Wen A: Hydroxysafflor yellow a
ameliorates renal fibrosis by suppressing tgf-beta1-induced
epithelial-to-mesenchymal transition. PLoS One. 11:e01534092016.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Zhang G, Kang Y, Zhou C, Cui R, Jia M, Hu
S, Ji X, Yuan J, Cui H and Shi G: Amelioratory effects of
testosterone propionate on age-related renal fibrosis via
suppression of TGF-β1/smad signaling and activation of Nrf2-ARE
signaling. Sci Rep. 8:107262018. View Article : Google Scholar : PubMed/NCBI
|
33
|
Roberts V, Lu B, Chia J, Cowan PJ and
Dwyer KM: CD39 overexpression does not attenuate renal fibrosis in
the unilateral ureteric obstructive model of chronic kidney
disease. Purinergic Signal. 12:653–660. 2016. View Article : Google Scholar : PubMed/NCBI
|
34
|
Stefanska A, Eng D, Kaverina N, Pippin JW,
Gross KW, Duffield JS and Shankland SJ: Cells of renin lineage
express hypoxia inducible factor 2alpha following experimental
ureteral obstruction. BMC Nephrol. 17:52016. View Article : Google Scholar : PubMed/NCBI
|
35
|
Liu Y: Renal fibrosis: New insights into
the pathogenesis and therapeutics. Kidney Int. 69:213–217. 2006.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Farris AB and Colvin RB: Renal
interstitial fibrosis: Mechanisms and evaluation. Curr Opin Nephrol
Hypertens. 21:289–300. 2012. View Article : Google Scholar : PubMed/NCBI
|
37
|
Myllyharju J and Kivirikko KI: Collagens,
modifying enzymes and their mutations in humans, flies and worms.
Trends Genet. 20:33–43. 2004. View Article : Google Scholar : PubMed/NCBI
|
38
|
Kadler K: Extracellular matrix 1:
Fibril-forming collagens. Protein Profile. 2:491–619.
1995.PubMed/NCBI
|
39
|
Hasegawa D, Fujii R, Yagishita N,
Matsumoto N, Aratani S, Izumi T, Azakami K, Nakazawa M, Fujita H,
Sato T, et al: E3 ubiquitin ligase synoviolin is involved in liver
fibrogenesis. PLoS One. 5:e135902010. View Article : Google Scholar : PubMed/NCBI
|
40
|
Holopainen I and Kontro P: Uptake and
release of glycine in cerebellar granule cells and astrocytes in
primary culture: Potassium-stimulated release from granule cells is
calcium-dependent. J Neurosci Res. 24:374–383. 1989. View Article : Google Scholar : PubMed/NCBI
|
41
|
Lopez-Hernandez FJ and Lopez-Novoa JM:
Role of TGF-beta in chronic kidney disease: An integration of
tubular, glomerular and vascular effects. Cell Tissue Res.
347:141–154. 2012. View Article : Google Scholar : PubMed/NCBI
|
42
|
Chen SJ, Wu P, Sun LJ, Zhou B, Niu W, Liu
S, Lin FJ and Jiang GR: miR-204 regulates epithelial-mesenchymal
transition by targeting SP1 in the tubular epithelial cells after
acute kidney injury induced by ischemia-reperfusion. Oncol Rep.
37:1148–1158. 2017. View Article : Google Scholar : PubMed/NCBI
|
43
|
Choi HS, Song JH, Kim IJ, Joo SY1, Eom GH,
Kim I, Cha H, Cho JM, Ma SK, Kim SW and Bae EH: Histone deacetylase
inhibitor, CG200745 attenuates renal fibrosis in obstructive kidney
disease. Sci Rep. 8:115462018. View Article : Google Scholar : PubMed/NCBI
|
44
|
Nangaku M: Chronic hypoxia and
tubulointerstitial injury: A final common pathway to end-stage
renal failure. J Am Soc Nephrol. 17:17–25. 2006. View Article : Google Scholar : PubMed/NCBI
|
45
|
Kang DH, Anderson S, Kim YG, Mazzalli M,
Suga S, Jefferson JA, Gordon KL, Oyama TT, Hughes J and Hugo C:
Impaired angiogenesis in the aging kidney: Vascular endothelial
growth factor and thrombospondin-1 in renal disease. Am J Kidney
Dis. 37:601–611. 2001. View Article : Google Scholar : PubMed/NCBI
|
46
|
Rudnicki M, Perco P, Enrich J, Eder S,
Heininger D, Bernthaler A, Wiesinger M, Sarközi R, Noppert SJ,
Schramek H, et al: Hypoxia response and VEGF-A expression in human
proximal tubular epithelial cells in stable and progressive renal
disease. Lab Invest. 89:337–346. 2009. View Article : Google Scholar : PubMed/NCBI
|
47
|
Isenberg JS, Martin-Manso G, Maxhimer JB
and Roberts DD: Regulation of nitric oxide signalling by
thrombospondin 1: implications for anti-angiogenic therapies. Nat
Rev Cancer. 9:182–194. 2009. View Article : Google Scholar : PubMed/NCBI
|
48
|
Crawford SE, Stellmach V, Murphy-Ullrich
JE, Ribeiro SM, Lawler J, Hynes RO, Boivin GP and Bouck N:
Thrombospondin-1 is a major activator of TGF-beta1 in vivo. Cell.
93:1159–1170. 1998. View Article : Google Scholar : PubMed/NCBI
|
49
|
Kang DH, Kanellis J, Hugo C, Truong L,
Anderson S, Kerjaschki D, Schreiner GF and Johnson RJ: Role of the
microvascular endothelium in progressive renal disease. J Am Soc
Nephrol. 13:806–816. 2002. View Article : Google Scholar : PubMed/NCBI
|
50
|
Iruela-Arispe ML, Bornstein P and Sage H:
Thrombospondin exerts an antiangiogenic effect on cord formation by
endothelial cells in vitro. Proc Natl Acad Sci USA. 88:5026–5030.
1991. View Article : Google Scholar : PubMed/NCBI
|
51
|
Zhang X and Lawler J: Thrombospondin-based
antiangiogenic therapy. Microvasc Res. 74:90–99. 2007. View Article : Google Scholar : PubMed/NCBI
|
52
|
Sun D, Ma Y, Han H, Yin Z, Liu C, Feng J,
Zhou X, Li X, Xiao A and Yu R: Thrombospondin-1 short hairpin RNA
suppresses tubulointerstitial fibrosis in the kidney of ureteral
obstruction by ameliorating peritubular capillary injury. Kidney
Blood Press Res. 35:35–47. 2012. View Article : Google Scholar : PubMed/NCBI
|
53
|
Liao F, Li G, Yuan W, Chen Y, Zuo Y,
Rashid K, Zhang JH, Feng H and Liu F: LSKL peptide alleviates
subarachnoid fibrosis and hydrocephalus by inhibiting TSP1-mediated
TGF-β1 signaling activity following subarachnoid hemorrhage in
rats. Exp Ther Med. 12:2537–2543. 2016. View Article : Google Scholar : PubMed/NCBI
|
54
|
Sun H, Zhao Y, Bi X, Li S, Su G, Miao Y,
Ma X, Zhang Y, Zhang W and Zhong M: Valsartan blocks
thrombospondin/transforming growth factor/Smads to inhibit aortic
remodeling in diabetic rats. Diagn Pathol. 10:182015. View Article : Google Scholar : PubMed/NCBI
|
55
|
Zeisberg M, Tampe B, LeBleu V, Tampe D,
Zeisberg EM and Kalluri R: Thrombospondin-1 deficiency causes a
shift from fibroproliferative to inflammatory kidney disease and
delays onset of renal failure. Am J Pathol. 184:2687–2698. 2014.
View Article : Google Scholar : PubMed/NCBI
|
56
|
Ma L, Li H, Zhang S, Xiong X, Chen K,
Jiang P, Jiang K and Deng G: Emodin ameliorates renal fibrosis in
rats via TGF-β1/Smad signaling pathway and function study of Smurf
2. Int Urol Nephrol. 50:373–382. 2018. View Article : Google Scholar : PubMed/NCBI
|
57
|
Loeffler I and Wolf G:
Epithelial-to-mesenchymal transition in diabetic nephropathy: Fact
or Fiction? Cells. 4:631–652. 2015. View Article : Google Scholar : PubMed/NCBI
|
58
|
Schiller M, Javelaud D and Mauviel A:
TGF-beta-induced SMAD signaling and gene regulation: Consequences
for extracellular matrix remodeling and wound healing. J Dermatol
Sci. 35:83–92. 2004. View Article : Google Scholar : PubMed/NCBI
|
59
|
Lan HY: Smads as therapeutic targets for
chronic kidney disease. Kidney Res Clin Pract. 31:4–11. 2012.
View Article : Google Scholar : PubMed/NCBI
|
60
|
Loeffler I, Liebisch M, Allert S, Kunisch
E, Kinne RW and Wolf G: FSP1-specific SMAD2 knockout in renal
tubular, endothelial, and interstitial cells reduces fibrosis and
epithelial-to-mesenchymal transition in murine STZ-induced diabetic
nephropathy. Cell Tissue Res. 372:115–133. 2018. View Article : Google Scholar : PubMed/NCBI
|
61
|
Chung AC, Zhang H, Kong YZ, Tan JJ, Huang
XR, Kopp JB and Lan HY: Advanced glycation end-products induce
tubular CTGF via TGF-beta-independent Smad3 signaling. J Am Soc
Nephrol. 21:249–260. 2010. View Article : Google Scholar : PubMed/NCBI
|
62
|
Fujimoto M, Maezawa Y, Yokote K, Joh K,
Kobayashi K, Kawamura H, Nishimura M, Roberts AB, Saito Y and Mori
S: Mice lacking Smad3 are protected against streptozotocin-induced
diabetic glomerulopathy. Biochem Biophys Res Commun. 305:1002–1007.
2003. View Article : Google Scholar : PubMed/NCBI
|
63
|
Li J, Qu X, Yao J, Caruana G, Ricardo SD,
Yamamoto Y, Yamamoto H and Bertram JF: Blockade of
endothelial-mesenchymal transition by a Smad3 inhibitor delays the
early development of streptozotocin-induced diabetic nephropathy.
Diabetes. 59:2612–2624. 2010. View Article : Google Scholar : PubMed/NCBI
|