1
|
Palavecino EL: Clinical, epidemiologic,
and laboratory aspects of methicillin-resistant Staphylococcus
aureus infections. Methods Mol Biol. 1085:1–24. 2014.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Bassetti M and Righi E:
Multidrug-resistant bacteria: What is the threat? Hematology Am Soc
Hematol Educ Program. 2013:428–432. 2013. View Article : Google Scholar : PubMed/NCBI
|
3
|
Kang HK, Kim C, Seo CH and Park Y: The
therapeutic applications of antimicrobial peptides (AMPs): A patent
review. J Microbiol. 55:1–12. 2017. View Article : Google Scholar : PubMed/NCBI
|
4
|
Zasloff M: Antimicrobial peptides of
multicellular organisms. Nature. 415:389–395. 2002. View Article : Google Scholar : PubMed/NCBI
|
5
|
Fjell CD, Hiss JA, Hancock RE and
Schneider G: Designing antimicrobial peptides: Form follows
function. Nat Rev Drug Discov. 11:37–51. 2011. View Article : Google Scholar : PubMed/NCBI
|
6
|
Zasloff M: Antibiotic peptides as
mediators of innate immunity. Curr Opin Immunol. 4:3–7. 1992.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Tripathi AK, Kumari T, Tandon A, Sayeed M,
Afshan T, Kathuria M, Shukla PK, Mitra K and Ghosh JK: Selective
phenylalanine to proline substitution for improved antimicrobial
and anticancer activities of peptides designed on phenylalanine
heptad repeat. Acta Biomater. 57:170–186. 2017. View Article : Google Scholar : PubMed/NCBI
|
8
|
Kazmirchuk T, Dick K, Burnside DJ, Barnes
B, Moteshareie H, Hajikarimlou M, Omidi K, Ahmed D, Low A, Lettl C,
et al: Designing anti-Zika virus peptides derived from predicted
human-Zika virus protein-protein interactions. Comput Biol Chem.
71:180–187. 2017. View Article : Google Scholar : PubMed/NCBI
|
9
|
Xia X, Cheng L, Zhang S, Wang L and Hu J:
The role of natural antimicrobial peptides during infection and
chronic inflammation. Antonie Van Leeuwenhoek. 111:5–26. 2018.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Ciociola T, Giovati L, Conti S, Magliani
W, Santinoli C and Polonelli L: Natural and synthetic peptides with
antifungal activity. Future Med Chem. 8:1413–1433. 2016. View Article : Google Scholar : PubMed/NCBI
|
11
|
Chen Z, Chang D, Zou Y, Su L, Zhu Y, Fang
X, Wang J, Guo Y, Zhao J, Li D, et al: Genome sequence of
enterococcus faecium clinical isolate LCT-EF128. J Bacteriol.
194:47652012. View Article : Google Scholar : PubMed/NCBI
|
12
|
Ouyang J, Sun F, Feng W, Sun Y, Qiu X,
Xiong L, Liu Y and Chen Y: Quercetin is an effective inhibitor of
quorum sensing, biofilm formation and virulence factors in
Pseudomonas aeruginosa. J Appl Microbiol. 120:966–974. 2016.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Clinical Laboratory Standards Institute, .
Performance Standards for Antimicrobial Susceptibility Testing;
25th Informational Supplement. CLSI document M100-S24. Clinical
Laboratory Standards Institute. (Wayne, PA). 2015.
|
14
|
Pankey GA and Ashcraft DS: In vitro
synergy of ciprofloxacin and gatifloxacin against
ciprofloxacin-resistant Pseudomonas aeruginosa. Antimicrob
Agents Chemother. 49:2959–2964. 2005. View Article : Google Scholar : PubMed/NCBI
|
15
|
Menegucci TC, Albiero J, Migliorini LB,
Alves JL, Viana GF, Mazucheli J, Carrara-Marroni FE, Cardoso CL and
Tognim MC: Strategies for the treatment of polymyxin B-resistant
acinetobacter baumannii infections. Int J Antimicrob Agents.
47:380–385. 2016. View Article : Google Scholar : PubMed/NCBI
|
16
|
Wuerth KC, Falsafi R and Hancock REW:
Synthetic host defense peptide IDR-1002 reduces inflammation in
Pseudomonas aeruginosa lung infection. PloS One.
12:e01875652017. View Article : Google Scholar : PubMed/NCBI
|
17
|
Wu X, Li Z, Li X, Tian Y, Fan Y, Yu C,
Zhou B, Liu Y, Xiang R and Yang L: Synergistic effects of
antimicrobial peptide DP7 combined with antibiotics against
multidrug-resistant bacteria. Drug Des Devel Ther. 11:939–946.
2017. View Article : Google Scholar : PubMed/NCBI
|
18
|
Bechinger B and Gorr SU: Antimicrobial
peptides: Mechanisms of action and resistance. J Dent Res.
96:254–260. 2017. View Article : Google Scholar : PubMed/NCBI
|
19
|
Mangoni ML, McDermott AM and Zasloff M:
Antimicrobial peptides and wound healing: Biological and
therapeutic considerations. Exp Dermatol. 25:167–173. 2016.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Ge Y, MacDonald DL, Holroyd KJ,
Thornsberry C, Wexler H and Zasloff M: In vitro antibacterial
properties of pexiganan, an analog of magainin. Antimicrob Agents
Chemother. 43:782–788. 1999. View Article : Google Scholar : PubMed/NCBI
|
21
|
Wellinghausen N, Chatterjee I, Berger A,
Niederfuehr A, Proctor RA and Kahl BC: Characterization of clinical
Enterococcus faecalis small-colony variants. J Clin Microbiol.
47:2802–2811. 2009. View Article : Google Scholar : PubMed/NCBI
|
22
|
Schillaci D, Cusimano MG, Spinello A,
Barone G, Russo D, Vitale M, Parrinello D and Arizza V: Paracentrin
1, a synthetic antimicrobial peptide from the sea-urchin
paracentrotus lividus, interferes with Staphylococcal and
Pseudomonas aeruginosa biofilm formation. AMB Express.
4:782014. View Article : Google Scholar : PubMed/NCBI
|
23
|
Gottschalk S, Gottlieb CT, Vestergaard M,
Hansen PR, Gram L, Ingmer H and Thomsen LE: Amphibian antimicrobial
peptide fallaxin analogue FL9 affects virulence gene expression and
DNA replication in Staphylococcus aureus. J Med Microbiol.
64:1504–1513. 2015. View Article : Google Scholar : PubMed/NCBI
|
24
|
Hu Y, Liu A, Vaudrey J, Vaiciunaite B,
Moigboi C, McTavish SM, Kearns A and Coates A: Combinations of
beta-lactam or aminoglycoside antibiotics with plectasin are
synergistic against methicillin-sensitive and methicillin-resistant
Staphylococcus aureus. PloS One. 10:e01176642015. View Article : Google Scholar : PubMed/NCBI
|
25
|
Wang Z, Zhang L, Wang J, Wei D, Shi B and
Shan A: Synergistic interaction of PMAP-36 and PRW4 with
aminoglycoside antibiotics and their antibacterial mechanism. World
J Microbiol Biotechnol. 30:3121–3128. 2014. View Article : Google Scholar : PubMed/NCBI
|
26
|
Sani MA and Separovic F: Antimicrobial
peptide structures: From model membranes to live cells. Chemistry.
24:286–291. 2018. View Article : Google Scholar : PubMed/NCBI
|
27
|
Marin-Medina N, Ramirez DA, Trier S and
Leidy C: Mechanical properties that influence antimicrobial peptide
activity in lipid membranes. Appl Microbiol Biotechnol.
100:10251–10263. 2016. View Article : Google Scholar : PubMed/NCBI
|
28
|
Amani J, Barjini KA, Moghaddam MM and
Asadi A: In vitro synergistic effect of the CM11 antimicrobial
peptide in combination with common antibiotics against clinical
isolates of six species of multidrug-resistant pathogenic bacteria.
Protein Pept Lett. 22:940–951. 2015. View Article : Google Scholar : PubMed/NCBI
|
29
|
Karampatakis V, Papanikolaou T, Giannousis
M, Goulas A, Mandraveli K, Kilmpasani M, Alexiou-Daniel S and
Mirtsou-Fidani V: Stability and antibacterial potency of
ceftazidime and vancomycin eyedrops reconstituted in BSS against
Pseudomonas aeruginosa and Staphylococcus aureus.
Acta Ophthalmol. 87:555–558. 2009. View Article : Google Scholar : PubMed/NCBI
|
30
|
Montanaro L, Speziale P, Campoccia D,
Ravaioli S, Cangini I, Pietrocola G, Giannini S and Arciola CR:
Scenery of staphylococcus implant infections in orthopedics. Future
Microbiol. 6:1329–1349. 2011. View Article : Google Scholar : PubMed/NCBI
|
31
|
Stewart EJ, Ganesan M, Younger JG and
Solomon MJ: Artificial biofilms establish the role of matrix
interactions in staphylococcal biofilm assembly and disassembly.
Sci Rep. 5:130812015. View Article : Google Scholar : PubMed/NCBI
|
32
|
Domingues MM, Inacio RG, Raimundo JM,
Martins M, Castanho MA and Santos NC: Biophysical characterization
of polymyxin B interaction with LPS aggregates and membrane model
systems. Biopolymers. 98:338–344. 2012. View Article : Google Scholar : PubMed/NCBI
|
33
|
Haney EF, Mansour SC and Hancock RE:
Antimicrobial peptides: An introduction. Methods Mol Biol.
1548:3–22. 2017. View Article : Google Scholar : PubMed/NCBI
|