1
|
Wang Y, Cutcliffe LT, Skilton RJ, Ramsey
KH, Thomson NR and Clarke IN: The genetic basis of plasmid tropism
between Chlamydia trachomatis and Chlamydia
muridarum. Pathog Dis. 72:19–23. 2014. View Article : Google Scholar : PubMed/NCBI
|
2
|
Weber MM, Lam JL, Dooley CA, Noriea NF,
Hansen BT, Hoyt FH, Carmody AB, Sturdevant GL and Hackstadt T:
Absence of specific Chlamydia trachomatis inclusion membrane
proteins triggers premature inclusion membrane lysis and host cell
death. Cell Rep. 19:1406–1417. 2017. View Article : Google Scholar : PubMed/NCBI
|
3
|
Whitcher JP, Srinivasan M and Upadhyay MP:
Corneal blindness: A global perspective. Bull World Health Organ.
79:214–221. 2001.PubMed/NCBI
|
4
|
Brunham RC and Rey-Ladino J: Immunology of
Chlamydia infection: Implications for a Chlamydia
trachomatis vaccine. Nat Rev Immunol. 5:149–161. 2005.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Yang C, Starr T, Song L, Carlson JH,
Sturdevant GL, Beare PA, Whitmire WM and Caldwell HD: Chlamydial
lytic exit from host cells is plasmid regulated. mBio. 6:e01648–15.
2015. View Article : Google Scholar : PubMed/NCBI
|
6
|
Moulder JW: Interaction of chlamydiae and
host cells in vitro. Microbiol Rev. 55:143–190. 1991.PubMed/NCBI
|
7
|
Stephens RS, Myers G, Eppinger M and
Bavoil PM: Divergence without difference: Phylogenetics and
taxonomy of Chlamydia resolved. FEMS Immunol Med Microbiol.
55:115–119. 2009. View Article : Google Scholar : PubMed/NCBI
|
8
|
Zhong G: Chlamydial plasmid-dependent
pathogenicity. Trends Microbiol. 25:141–152. 2017. View Article : Google Scholar : PubMed/NCBI
|
9
|
Patton MJ, McCorrister S, Grant C,
Westmacott G, Fariss R, Hu P, Zhao K, Blake M, Whitmire B, Yang C,
et al: Chlamydial protease-like activity factor and type III
secreted effectors cooperate in inhibition of p65 nuclear
translocation. mBio. 7(pii): e01427–16. 2016.PubMed/NCBI
|
10
|
Lu C, Lei L, Peng B, Tang L, Ding H, Gong
S, Li Z, Wu Y and Zhong G: Chlamydia trachomatis GlgA is
secreted into host cell cytoplasm. PLoS One. 8:e687642013.
View Article : Google Scholar : PubMed/NCBI
|
11
|
O'Connell CM, Ingalls RR, Andrews CW Jr,
Scurlock AM and Darville T: Plasmid-deficient Chlamydia
muridarum fail to induce immune pathology and protect against
oviduct disease. J Immunol. 179:4027–4034. 2007. View Article : Google Scholar : PubMed/NCBI
|
12
|
Ma RR, Sun J, Fang WH, Dong YP, Ruan JM,
Yang XL and Hu K: Identification of Carassius auratus
gibelio liver cell proteins interacting with the
GABAA receptor γ2 subunit using a yeast two-hybrid
system. Fish Physiol Biochem. 45:199–208. 2019. View Article : Google Scholar : PubMed/NCBI
|
13
|
Fields S and Song O: A novel genetic
system to detect protein-protein interactions. Nature. 340:245–246.
1989. View
Article : Google Scholar : PubMed/NCBI
|
14
|
Nguyen PH, Lutter EI and Hackstadt T:
Chlamydia trachomatis inclusion membrane protein MrcA
interacts with the inositol 1,4,5-trisphosphate receptor type 3
(ITPR3) to regulate extrusion formation. PLoS Pathog.
14:e10069112018. View Article : Google Scholar : PubMed/NCBI
|
15
|
Lee PY, Costumbrado J, Hsu CY and Kim YH:
Agarose gel electrophoresis for the separation of DNA fragments. J
Vis Exp:. (pii): 39232012.PubMed/NCBI
|
16
|
Gietz RD and Schiestl RH: High-efficiency
yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat
Protoc. 2:31–34. 2007. View Article : Google Scholar : PubMed/NCBI
|
17
|
Zhao X, Li P, An K, Jia X, Cheng Y and Jia
T: Chlamydia pneumoniae inclusion membrane protein Cpn0147
interacts with host protein CREB3. PLoS One. 12:e01855932017.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Velmurugan R and Incharoensakdi A:
Disruption of polyhydroxybutyrate synthesis redirects carbon flow
towards glycogen synthesis in synechocystis sp. PCC 6803
overexpressing glgC/glgA. Plant Cell Physiol. 59:2020–2029. 2018.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Preiss J: Bacterial glycogen synthesis and
its regulation. Annu Rev Microbiol. 38:419–458. 1984. View Article : Google Scholar : PubMed/NCBI
|
20
|
Stephens RS, Kalman S, Lammel C, Fan J,
Marathe R, Aravind L, Mitchell W, Olinger L, Tatusov RL, Zhao Q, et
al: Genome sequence of an obligate intracellular pathogen of
humans: Chlamydia trachomatis. Science. 282:754–759. 1998.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Everett KD, Bush RM and Andersen AA:
Emended description of the order Chlamydiales, proposal of
Parachlamydiaceae fam. nov. and Simkaniaceae fam.
nov., each containing one monotypic genus, revised taxonomy of the
family Chlamydiaceae, including a new genus and five new species,
and standards for the identification of organisms. Int J Syst
Bacteriol. 49:415–440. 1999. View Article : Google Scholar : PubMed/NCBI
|
22
|
Stynen B, Tournu H, Tavernier J and Van
Dijck P: Diversity in genetic in vivo methods for protein-protein
interaction studies: From the yeast two-hybrid system to the
mammalian split-luciferase system. Microbiol Mol Biol Rev.
76:331–382. 2012. View Article : Google Scholar : PubMed/NCBI
|
23
|
Peterson TA, Stamnes MA and Piper RC: A
yeast 2-hybrid screen in batch to compare protein interactions. J
Vis Exp. 2018. View
Article : Google Scholar
|
24
|
Cao W, Guo J, Wen X, Miao L, Lin F, Xu G,
Ma R, Yin S, Hui Z, Chen T, et al: CXXC finger protein 1 is
critical for T-cell intrathymic development through regulating H3K4
trimethylation. Nat Commun. 7:116872016. View Article : Google Scholar : PubMed/NCBI
|
25
|
Wizel B, Nystrom-Asklin J, Cortes C and
Tvinnereim A: Role of CD8(+)T cells in the host response to
Chlamydia. Microbes Infect. 10:1420–1430. 2008. View Article : Google Scholar : PubMed/NCBI
|
26
|
Yang J, Li B and He QY: Significance of
prohibitin domain family in tumorigenesis and its implication in
cancer diagnosis and treatment. Cell Death Dis. 9:5802018.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Guan X, Liu Z, Wang L, Johnson DG and Wei
Q: Identification of prohibitin and prohibiton as novel factors
binding to the p53 induced gene 3 (PIG3) promoter (TGYCC)(15)
motif. Biochem Biophys Res Commun. 443:1239–1244. 2014. View Article : Google Scholar : PubMed/NCBI
|
28
|
Kuramori C, Azuma M, Kume K, Kaneko Y,
Inoue A, Yamaguchi Y, Kabe Y, Hosoya T, Kizaki M, Suematsu M and
Handa H: Capsaicin binds to prohibitin 2 and displaces it from the
mitochondria to the nucleus. Biochem Biophys Res Commun.
379:519–525. 2009. View Article : Google Scholar : PubMed/NCBI
|
29
|
Signorile A, Sgaramella G, Bellomo F and
De Rasmo D: Prohibitins: A critical role in mitochondrial functions
and implication in diseases. Cells. 8(pii): E712019. View Article : Google Scholar : PubMed/NCBI
|
30
|
Fischer SF, Vier J, Kirschnek S, Klos A,
Hess S, Ying S and Häcker G: Chlamydia inhibit host cell apoptosis
by degradation of proapoptotic BH3-only proteins. J Exp Med.
200:905–916. 2004. View Article : Google Scholar : PubMed/NCBI
|
31
|
Yu Y: Prohibitin shuttles between
mitochondria and the nucleus to control genome stability during the
cell cycle. Plant Physiol. 179:1435–1436. 2019. View Article : Google Scholar : PubMed/NCBI
|
32
|
Yu FX, Johnston PA, Südhof TC and Yin HL:
gCap39, a calcium ion- and polyphosphoinositide-regulated actin
capping protein. Science. 250:1413–1415. 1990. View Article : Google Scholar : PubMed/NCBI
|
33
|
Li T, Hong X, Zhao J, Teng Y, Zheng J,
Chen H, Chen H and Li H: Gelsolin-like actin-capping protein is
associated with patient prognosis, cellular apoptosis and
proliferation in prostate cancer. Biomark Med. 10:1251–1260. 2016.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Papala A, Sylvester M, Dyballa-Rukes N,
Metzger S and D'Haese J: Isolation and characterization of human
CapG expressed and post-translationally modified in Pichia
pastoris. Protein Expr Purif. 134:25–37. 2017. View Article : Google Scholar : PubMed/NCBI
|
35
|
Hubert T, Van Impe K, Vandekerckhove J and
Gettemans J: The actin-capping protein CapG localizes to
microtubule-dependent organelles during the cell cycle. Biochem
Biophys Res Commun. 380:166–170. 2009. View Article : Google Scholar : PubMed/NCBI
|
36
|
Hybiske K and Stephens RS: Mechanisms of
host cell exit by the intracellular bacterium Chlamydia.
Proc Natl Acad Sci USA. 104:11430–11435. 2007. View Article : Google Scholar : PubMed/NCBI
|
37
|
Lutter EI, Barger AC, Nair V and Hackstadt
T: Chlamydia trachomatis inclusion membrane protein CT228
recruits elements of the myosin phosphatase pathway to regulate
release mechanisms. Cell Rep. 3:1921–1931. 2013. View Article : Google Scholar : PubMed/NCBI
|
38
|
White CR, Datta G, Wilson L, Palgunachari
MN and Anantharamaiah GM: The apoA-I mimetic peptide 4F protects
apolipoprotein A-I from oxidative damage. Chem Phys Lipids.
219:28–35. 2019. View Article : Google Scholar : PubMed/NCBI
|
39
|
Kingwell BA, Chapman MJ, Kontush A and
Miller NE: HDL-targeted therapies: Progress, failures and future.
Nat Rev Drug Discov. 13:445–464. 2014. View Article : Google Scholar : PubMed/NCBI
|
40
|
Rye KA and Barter PJ: Cardioprotective
functions of HDLs. J Lipid Res. 55:168–179. 2014. View Article : Google Scholar : PubMed/NCBI
|
41
|
Campbell LA and Kuo CC: Chlamydia
pneumoniae-an infectious risk factor for atherosclerosis? Nat
Rev Microbiol. 2:23–32. 2004. View Article : Google Scholar : PubMed/NCBI
|