Roles of inflammation factors in melanogenesis (Review)
- Authors:
- Chuhan Fu
- Jing Chen
- Jianyun Lu
- Lu Yi
- Xiaoliang Tong
- Liyang Kang
- Shiyao Pei
- Yujie Ouyang
- Ling Jiang
- Yufang Ding
- Xiaojiao Zhao
- Si Li
- Yan Yang
- Jinhua Huang
- Qinghai Zeng
-
Affiliations: Department of Dermatology, Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China - Published online on: January 17, 2020 https://doi.org/10.3892/mmr.2020.10950
- Pages: 1421-1430
-
Copyright: © Fu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Gröne A: Keratinocytes and cytokines. Vet Immunol Immunopathol. 88:1–12. 2002. View Article : Google Scholar : PubMed/NCBI | |
Skobowiat C, Dowdy JC, Sayre RM, Tuckey RC and Slominski A: Cutaneous hypothalamic-pituitary-adrenal axis homolog: Regulation by ultraviolet radiation. Am J Physiol Endocrinol Metab. 301:E484–E493. 2011. View Article : Google Scholar : PubMed/NCBI | |
Weiss E, Mamelak AJ, La Morgia S, Wang B, Feliciani C, Tulli A and Sauder DN: The role of interleukin 10 in the pathogenesis and potential treatment of skin diseases. J Am Acad Dermatol. 50:657–678. 2004. View Article : Google Scholar : PubMed/NCBI | |
Martin SF: Contact dermatitis: From pathomechanisms to immunotoxicology. Exp Dermatol. 21:382–389. 2012. View Article : Google Scholar : PubMed/NCBI | |
Miller LS and Cho JS: Immunity against Staphylococcus aureus cutaneous infections. Nat Rev Immunol. 11:505–518. 2011. View Article : Google Scholar : PubMed/NCBI | |
Behrends U, Peter RU, Hintermeier-Knabe R, Eissner G, Holler E, Bornkamm GW, Caughman SW and Degitz K: Ionizing radiation induces human intercellular adhesion molecule-1 in vitro. J Invest Dermatol. 103:726–730. 1994. View Article : Google Scholar : PubMed/NCBI | |
Fuchs J and Kern H: Modulation of UV-light-induced skin inflammation by D-alpha-tocopherol and L-ascorbic acid: A clinical study using solar simulated radiation. Free Radic Biol Med. 25:1006–1012. 1998. View Article : Google Scholar : PubMed/NCBI | |
Basler K and Brandner JM: Tight junctions in skin inflammation. Pflugers Arch. 469:3–14. 2017. View Article : Google Scholar : PubMed/NCBI | |
Grine L, Dejager L, Libert C and Vandenbroucke RE: An inflammatory triangle in psoriasis: TNF, type I IFNs and IL-17. Cytokine Growth Factor Rev. 26:25–33. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang CQF, Akalu YT, Suarez-Farinas M, Gonzalez J, Mitsui H, Lowes MA, Orlow SJ, Manga P and Krueger JG: IL-17 and TNF synergistically modulate cytokine expression while suppressing melanogenesis: Potential relevance to psoriasis. J Invest Dermatol. 133:2741–2752. 2013. View Article : Google Scholar : PubMed/NCBI | |
Slominski A, Tobin DJ, Shibahara S and Wortsman J: Melanin pigmentation in mammalian skin and its hormonal regulation. Physiol Rev. 84:1155–1228. 2004. View Article : Google Scholar : PubMed/NCBI | |
Swope VB, Abdel-Malek Z, Kassem LM and Nordlund JJ: Interleukins 1 alpha and 6 and tumor necrosis factor-alpha are paracrine inhibitors of human melanocyte proliferation and melanogenesis. J Invest Dermatol. 96:180–185. 1991. View Article : Google Scholar : PubMed/NCBI | |
Choi H, Choi H, Han J, Jin SH, Park JY, Shin DW, Lee TR, Kim K, Lee AY and Noh M: IL-4 inhibits the melanogenesis of normal human melanocytes through the JAK2-STAT6 signaling pathway. J Invest Dermatol. 133:528–536. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhou J, Song J, Ping F and Shang J: Enhancement of the p38 MAPK and PKA signaling pathways is associated with the pro-melanogenic activity of Interleukin 33 in primary melanocytes. J Dermatol Sci. 73:110–116. 2014. View Article : Google Scholar : PubMed/NCBI | |
Tsatmali M, Ancans J and Thody AJ: Melanocyte function and its control by melanocortin peptides. J Histochem Cytochem. 50:125–133. 2002. View Article : Google Scholar : PubMed/NCBI | |
Costin GE and Hearing VJ: Human skin pigmentation: Melanocytes modulate skin color in response to stress. FASEB J. 21:976–994. 2007. View Article : Google Scholar : PubMed/NCBI | |
Videira IF, Moura DF and Magina S: Mechanisms regulating melanogenesis. An Bras Dermatol. 88:76–83. 2013. View Article : Google Scholar : PubMed/NCBI | |
Yamaguchi Y, Brenner M and Hearing VJ: The regulation of skin pigmentation. J Biol Chem. 282:27557–27561. 2007. View Article : Google Scholar : PubMed/NCBI | |
Seong ZK, Lee SY, Poudel A, Oh SR and Lee HK: Constituents of cryptotaenia japonica inhibit melanogenesis via CREB- and MAPK-associated signaling pathways in murine B16 melanoma cells. Molecules. 21(pii): E12962016. View Article : Google Scholar : PubMed/NCBI | |
Campos PM, Prudente AS, Horinouchi CD, Cechinel-Filho V, Fávero GM, Cabrini DA and Otuki MF: Inhibitory effect of GB-2a (I3-naringenin-II8-eriodictyol) on melanogenesis. J Ethnopharmacol. 174:224–229. 2015. View Article : Google Scholar : PubMed/NCBI | |
Tsao YT, Huang YF, Kuo CY, Lin YC, Chiang WC, Wang WK, Hsu CW and Lee CH: Hinokitiol inhibits melanogenesis via AKT/mTOR signaling in B16F10 mouse melanoma cells. Int J Mol Sci. 17:2482016. View Article : Google Scholar : PubMed/NCBI | |
Hirobe T: Role of keratinocyte-derived factors involved in regulating the proliferation and differentiation of mammalian epidermal melanocytes. Pigment Cell Res. 18:2–12. 2005. View Article : Google Scholar : PubMed/NCBI | |
Schallreuter KU, Kothari S, Chavan B and Spencer JD: Regulation of melanogenesis-controversies and new concepts. Exp Dermatol. 17:395–404. 2008. View Article : Google Scholar : PubMed/NCBI | |
Lin JY and Fisher DE: Melanocyte biology and skin pigmentation. Nature. 445:843–850. 2007. View Article : Google Scholar : PubMed/NCBI | |
Park HY, Kosmadaki M, Yaar M and Gilchrest BA: Cellular mechanisms regulating human melanogenesis. Cell Mol Life Sci. 66:1493–1506. 2009. View Article : Google Scholar : PubMed/NCBI | |
Schiaffino MV: Signaling pathways in melanosome biogenesis and pathology. Int J Biochem Cell Biol. 42:1094–1104. 2010. View Article : Google Scholar : PubMed/NCBI | |
Yuan XH and Jin ZH: Paracrine regulation of melanogenesis. Br J Dermatol. 178:632–639. 2018. View Article : Google Scholar : PubMed/NCBI | |
Swope VB and Abdel-Malek ZA: MC1R: Front and center in the bright side of dark eumelanin and DNA repair. Int J Mol Sci. 19(pii): E26672018. View Article : Google Scholar : PubMed/NCBI | |
Grando SA, Pittelkow MR and Schallreuter KU: Adrenergic and cholinergic control in the biology of epidermis: Physiological and clinical significance. J Invest Dermatol. 126:1948–1965. 2006. View Article : Google Scholar : PubMed/NCBI | |
Bonaventure J, Domingues MJ and Larue L: Cellular and molecular mechanisms controlling the migration of melanocytes and melanoma cells. Pigment Cell Melanoma Res. 26:316–325. 2013. View Article : Google Scholar : PubMed/NCBI | |
Besmer P, Murphy JE, George PC, Qiu FH, Bergold PJ, Lederman L, Snyder HW Jr, Brodeur D, Zuckerman EE and Hardy WD: A new acute transforming feline retrovirus and relationship of its oncogene v-kit with the protein kinase gene family. Nature. 320:415–421. 1986. View Article : Google Scholar : PubMed/NCBI | |
Yarden Y, Kuang WJ, Yang-Feng T, Coussens L, Munemitsu S, Dull TJ, Chen E, Schlessinger J, Francke U and Ullrich A: Human proto-oncogene c-kit: A new cell surface receptor tyrosine kinase for an unidentified ligand. EMBO J. 6:3341–3351. 1987. View Article : Google Scholar : PubMed/NCBI | |
Dorsky RI, Raible DW and Moon RT: Direct regulation of nacre, a zebrafish MITF homolog required for pigment cell formation, by the Wnt pathway. Genes Dev. 14:158–162. 2000.PubMed/NCBI | |
Flaherty KT, Hodi FS and Fisher DE: From genes to drugs: Targeted strategies for melanoma. Nat Rev Cancer. 12:349–361. 2012. View Article : Google Scholar : PubMed/NCBI | |
Widlund HR, Horstmann MA, Price ER, Cui J, Lessnick SL, Wu M, He X and Fisher DE: Beta-catenin-induced melanoma growth requires the downstream target Microphthalmia-associated transcription factor. J Cell Biol. 158:1079–1087. 2002. View Article : Google Scholar : PubMed/NCBI | |
Jung E, Lee J, Huh S, Lee J, Kim YS, Kim G and Park D: Phloridzin-induced melanogenesis is mediated by the cAMP signaling pathway. Food Chem Toxicol. 47:2436–2440. 2009. View Article : Google Scholar : PubMed/NCBI | |
Satomi H, Wang B, Fujisawa H and Otsuka F: Interferon-beta from melanoma cells suppresses the proliferations of melanoma cells in an autocrine manner. Cytokine. 18:108–115. 2002. View Article : Google Scholar : PubMed/NCBI | |
Mattei S, Colombo MP, Melani C, Silvani A, Parmiani G and Herlyn M: Expression of cytokine/growth factors and their receptors in human melanoma and melanocytes. Int J Cancer. 56:853–857. 1994. View Article : Google Scholar : PubMed/NCBI | |
Mosmann TR and Sad S: The expanding universe of T-cell subsets: Th1, Th2 and more. Immunol Today. 17:138–146. 1996. View Article : Google Scholar : PubMed/NCBI | |
O'Garra A: Cytokines induce the development of functionally heterogeneous T helper cell subsets. Immunity. 8:275–283. 1998. View Article : Google Scholar : PubMed/NCBI | |
Reiner SL and Seder RA: Dealing from the evolutionary pawnshop: How lymphocytes make decisions. Immunity. 11:1–10. 1999. View Article : Google Scholar : PubMed/NCBI | |
Bennicelli JL and Guerry D VI: Production of multiple cytokines by cultured human melanomas. Exp Dermatol. 2:186–190. 1993. View Article : Google Scholar : PubMed/NCBI | |
Zhou J, Shang J, Song J and Ping F: Interleukin-18 augments growth ability of primary human melanocytes by PTEN inactivation through the AKT/NF-κB pathway. Int J Biochem Cell Biol. 45:308–316. 2013. View Article : Google Scholar : PubMed/NCBI | |
Yun W and Li C: JNK pathway is required for TNCB-induced IL-18 expression in murine keratinocytes. Toxicol In Vitro. 24:1064–1069. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wittmann M, Macdonald A and Renne J: IL-18 and skin inflammation. Autoimmun Rev. 9:45–48. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zhou J, Ling J, Wang Y, Shang J and Ping F: Cross-talk between interferon-gamma and interleukin-18 in melanogenesis. J Photochem Photobiol B. 163:133–143. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ali S, Huber M, Kollewe C, Bischoff SC, Falk W and Martin MU: IL-1 receptor accessory protein is essential for IL-33-induced activation of T lymphocytes and mast cells. Proc Natl Acad Sci USA. 104:18660–18665. 2007. View Article : Google Scholar : PubMed/NCBI | |
Allakhverdi Z, Smith DE, Comeau MR and Delespesse G: Cutting edge: The ST2 ligand IL-33 potently activates and drives maturation of human mast cells. J Immunol. 179:2051–2054. 2007. View Article : Google Scholar : PubMed/NCBI | |
Moulin D, Donze O, Talabot-Ayer D, Mezin F, Palmer G and Gabay C: Interleukin (IL)-33 induces the release of pro-inflammatory mediators by mast cells. Cytokine. 40:216–225. 2007. View Article : Google Scholar : PubMed/NCBI | |
Theoharides TC, Zhang B, Kempuraj D, Tagen M, Vasiadi M, Angelidou A, Alysandratos KD, Kalogeromitros D, Asadi S, Stavrianeas N, et al: IL-33 augments substance P-induced VEGF secretion from human mast cells and is increased in psoriatic skin. Proc Natl Acad Sci USA. 107:4448–4453. 2010. View Article : Google Scholar : PubMed/NCBI | |
Pushparaj PN, Tay HK, H'ng SC, Pitman N, Xu D, McKenzie A, Liew FY and Melendez AJ: The cytokine interleukin-33 mediates anaphylactic shock. Proc Natl Acad Sci USA. 106:9773–9778. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kurowska-Stolarska M, Stolarski B, Kewin P, Murphy G, Corrigan CJ, Ying S, Pitman N, Mirchandani A, Rana B, van Rooijen N, et al: IL-33 amplifies the polarization of alternatively activated macrophages that contribute to airway inflammation. J Immunol. 183:6469–6477. 2009. View Article : Google Scholar : PubMed/NCBI | |
Ohno T, Oboki K, Kajiwara N, Morii E, Aozasa K, Flavell RA, Okumura K, Saito H and Nakae S: Caspase-1, caspase-8, and calpain are dispensable for IL-33 release by macrophages. J Immunol. 183:7890–7897. 2009. View Article : Google Scholar : PubMed/NCBI | |
Schmieder A, Multhoff G and Radons J: Interleukin-33 acts as a pro-inflammatory cytokine and modulates its receptor gene expression in highly metastatic human pancreatic carcinoma cells. Cytokine. 60:514–521. 2012. View Article : Google Scholar : PubMed/NCBI | |
Hueber AJ, Alves-Filho JC, Asquith DL, Michels C, Millar NL, Reilly JH, Graham GJ, Liew FY, Miller AM and McInnes IB: IL-33 induces skin inflammation with mast cell and neutrophil activation. Eur J Immunol. 41:2229–2237. 2011. View Article : Google Scholar : PubMed/NCBI | |
Schmitz J, Owyang A, Oldham E, Song Y, Murphy E, McClanahan TK, Zurawski G, Moshrefi M, Qin J, Li X, et al: IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity. 23:479–490. 2005. View Article : Google Scholar : PubMed/NCBI | |
Suzukawa M, Iikura M, Koketsu R, Nagase H, Tamura C, Komiya A, Nakae S, Matsushima K, Ohta K, Yamamoto K and Yamaguchi M: An IL-1 cytokine member, IL-33, induces human basophil activation via its ST2 receptor. J Immunol. 181:5981–5989. 2008. View Article : Google Scholar : PubMed/NCBI | |
Rank MA, Kobayashi T, Kozaki H, Bartemes KR, Squillace DL and Kita H: IL-33-activated dendritic cells induce an atypical TH2-type response. J Allergy Clin Immunol. 123:1047–1054. 2009. View Article : Google Scholar : PubMed/NCBI | |
Arend WP, Palmer G and Gabay C: IL-1, IL-18, and IL-33 families of cytokines. Immunol Rev. 223:20–38. 2008. View Article : Google Scholar : PubMed/NCBI | |
Byrne SN, Beaugie C, O'Sullivan C, Leighton S and Halliday GM: The immune-modulating cytokine and endogenous Alarmin interleukin-33 is upregulated in skin exposed to inflammatory UVB radiation. Am J Pathol. 179:211–222. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wu XG, Hong WS and Xu A: GM-CSF: A possible prognostic serum biomarker of vitiligo patients' considered for transplantation treatment with cultured autologous melanocytes: A pilot study. J Eur Acad Dermatol Venereol. 30:1409–1411. 2016. View Article : Google Scholar : PubMed/NCBI | |
Scott G, Leopardi S, Printup S, Malhi N, Seiberg M and Lapoint R: Proteinase-activated receptor-2 stimulates prostaglandin production in keratinocytes: Analysis of prostaglandin receptors on human melanocytes and effects of PGE2 and PGF2alpha on melanocyte dendricity. J Invest Dermatol. 122:1214–1224. 2004. View Article : Google Scholar : PubMed/NCBI | |
Scott G, Jacobs S, Leopardi S, Anthony FA, Learn D, Malaviya R and Pentland A: Effects of PGF2alpha on human melanocytes and regulation of the FP receptor by ultraviolet radiation. Exp Cell Res. 304:407–416. 2005. View Article : Google Scholar : PubMed/NCBI | |
Ma HJ, Ma HY, Yang Y, Li PC, Zi SX, Jia CY and Chen R: a-Melanocyte stimulating hormone (MSH) and prostaglandin E2 (PGE2) drive melanosome transfer by promoting filopodia delivery and shedding spheroid granules: Evidences from atomic force microscopy observation. J Dermatol Sci. 76:222–230. 2014. View Article : Google Scholar : PubMed/NCBI | |
Bach EA, Aguet M and Schreiber RD: The IFN gamma receptor: A paradigm for cytokine receptor signaling. Annu Rev Immunol. 15:563–591. 1997. View Article : Google Scholar : PubMed/NCBI | |
Carnaud C, Lee D, Donnars O, Park SH, Beavis A, Koezuka Y and Bendelac A: Cutting edge: Cross-talk between cells of the innate immune system: NKT cells rapidly activate NK cells. J Immunol. 163:4647–4650. 1999.PubMed/NCBI | |
Frucht DM, Fukao T, Bogdan C, Schindler H, O'Shea JJ and Koyasu S: IFN-gamma production by antigen-presenting cells: Mechanisms emerge. Trends Immunol. 22:556–560. 2001. View Article : Google Scholar : PubMed/NCBI | |
Flaishon L, Hershkoviz R, Lantner F, Lider O, Alon R, Levo Y, Flavell RA and Shachar I: Autocrine secretion of interferon gamma negatively regulates homing of immature B cells. J Exp Med. 192:1381–1388. 2000. View Article : Google Scholar : PubMed/NCBI | |
Harris JE, Harris TH, Weninger W, Wherry EJ, Hunter CA and Turka LA: A mouse model of vitiligo with focused epidermal depigmentation requires IFN-γ for autoreactive CD8+ T-cell accumulation in the skin. J Invest Dermatol. 132:1869–1876. 2012. View Article : Google Scholar : PubMed/NCBI | |
Gregg RK, Nichols L, Chen Y, Lu B and Engelhard VH: Mechanisms of spatial and temporal development of autoimmune vitiligo in tyrosinase-specific TCR transgenic mice. J Immunol. 184:1909–1917. 2010. View Article : Google Scholar : PubMed/NCBI | |
Yang L, Wei Y, Sun Y, Shi W, Yang J, Zhu L and Li M: Interferon-gamma inhibits melanogenesis and induces apoptosis in melanocytes: A pivotal role of CD8+ cytotoxic T lymphocytes in vitiligo. Acta Derm Venereol. 95:664–670. 2015. View Article : Google Scholar : PubMed/NCBI | |
Natarajan VT, Ganju P, Singh A, Vijayan V, Kirty K, Yadav S, Puntambekar S, Bajaj S, Dani PP, Kar HK, et al: IFN-γ signaling maintains skin pigmentation homeostasis through regulation of melanosome maturation. Proc Natl Acad Sci USA. 111:2301–2306. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kristensen M, Chu CQ, Eedy DJ, Feldmann M, Brennan FM and Breathnach SM: Localization of tumour necrosis factor-alpha (TNF-alpha) and its receptors in normal and psoriatic skin: Epidermal cells express the 55-kD but not the 75-kD TNF receptor. Clin Exp Immunol. 94:354–362. 1993. View Article : Google Scholar : PubMed/NCBI | |
Kholmanskikh O, van Baren N, Brasseur F, Ottaviani S, Vanacker J, Arts N, van der Bruggen P, Coulie P and De Plaen E: Interleukins 1alpha and 1beta secreted by some melanoma cell lines strongly reduce expression of MITF-M and melanocyte differentiation antigens. Int J Cancer. 127:1625–1636. 2010. View Article : Google Scholar : PubMed/NCBI | |
Martin MU and Wesche H: Summary and comparison of the signaling mechanisms of the Toll/interleukin-1 receptor family. Biochim Biophys Acta. 1592:265–280. 2002. View Article : Google Scholar : PubMed/NCBI | |
Tang A and Gilchrest B: Regulation of keratinocyte growth factor gene expression in human skin fibroblasts. J Dermatol Sci. 11:41–50. 1996. View Article : Google Scholar : PubMed/NCBI | |
Grewe M, Gyufko K, Budnik A, Ruzicka T, Olaizola-Horn S, Berneburg M and Krutmann J: Interleukin-1 receptors type I and type II are differentially regulated in human keratinocytes by ultraviolet B radiation. J Invest Dermatol. 107:865–870. 1996.PubMed/NCBI | |
Kondo S, Sauder DN, Kono T, Galley KA and McKenzie RC: Differential modulation of interleukin-1 alpha (IL-1 alpha) and interleukin-1 beta (IL-1 beta) in human epidermal keratinocytes by UVB. Exp Dermatol. 3:29–39. 1994. View Article : Google Scholar : PubMed/NCBI | |
Chen N, Hu Y, Li WH, Eisinger M, Seiberg M and Lin CB: The role of keratinocyte growth factor in melanogenesis: A possible mechanism for the initiation of solar lentigines. Exp Dermatol. 19:865–872. 2010. View Article : Google Scholar : PubMed/NCBI | |
Sims J, March C, Cosman D, Widmer MB, MacDonald HR, McMahan CJ, Grubin CE, Wignall JM, Jackson JL, Call SM, et al: cDNA expression cloning of the IL-1 receptor, a member of the immunoglobulin superfamily. Science. 241:585–589. 1988. View Article : Google Scholar : PubMed/NCBI | |
Barata LT, Ying S, Meng Q, Barkans J, Rajakulasingam K, Durham SR and Kay AB: IL-4- and IL-5-positive T lymphocytes, eosinophils, and mast cells in allergen-induced late-phase cutaneous reactions in atopic subjects. J Allergy Clin Immunol. 101:222–230. 1998. View Article : Google Scholar : PubMed/NCBI | |
Min B, Prout M, Hu-Li J, Zhu J, Jankovic D, Morgan ES, Urban JF Jr, Dvorak AM, Finkelman FD, LeGros G and Paul WE: Basophils produce IL-4 and accumulate in tissues after infection with a Th2-inducing parasite. J Exp Med. 200:507–517. 2004. View Article : Google Scholar : PubMed/NCBI | |
Imran M, Laddha N, Dwivedi M, Mansuri MS, Singh J, Rani R, Gokhale RS, Sharma VK, Marfatia YS and Begum R: Interleukin-4 genetic variants correlate with its transcript and protein levels in patients with vitiligo. Br J Dermatol. 167:314–323. 2012. View Article : Google Scholar : PubMed/NCBI | |
Salgame P, Abrams JS, Clayberger C, Goldstein H, Convit J, Modlin RL and Bloom BR: Differing lymphokine profiles of functional subsets of human CD4 and CD8 T cell clones. Science. 254:279–282. 1991. View Article : Google Scholar : PubMed/NCBI | |
Basak PY, Adiloglu AK, Ceyhan AM, Tas T and Akkaya VB: The role of helper and regulatory T cells in the pathogenesis of vitiligo. J Am Acad Dermatol. 60:256–260. 2009. View Article : Google Scholar : PubMed/NCBI | |
Nouri-Koupaee A, Mansouri P, Jahanbini H, Sanati MH and Jadali Z: Differential expression of mRNA for T-bet and GATA-3 transcription factors in peripheral blood mononuclear cells of patients with vitiligo. Clin Exp Dermatol. 40:735–740. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hirano T, Ishihara K and Hibi M: Roles of STAT3 in mediating the cell growth, differentiation and survival signals relayed through the IL-6 family of cytokine receptors. Oncogene. 19:2548–2556. 2000. View Article : Google Scholar : PubMed/NCBI | |
Speeckaert R, Lambert J, Grine L, Van Gele M, De Schepper S and van Geel N: The many faces of interleukin-17 in inflammatory skin diseases. Br J Dermatol. 175:892–901. 2016. View Article : Google Scholar : PubMed/NCBI | |
Volpe E, Servant N, Zollinger R, Bogiatzi SI, Hupé P, Barillot E and Soumelis V: A critical function for transforming growth factor-beta, interleukin 23 and proinflammatory cytokines in driving and modulating human T(H)-17 responses. Nat Immunol. 9:650–657. 2008. View Article : Google Scholar : PubMed/NCBI | |
Kang WH, Yoon KH, Lee ES, Kim J, Lee KB, Yim H, Sohn S and Im S: Melasma: Histopathological characteristics in 56 Korean patients. Br J Dermatol. 146:228–237. 2002. View Article : Google Scholar : PubMed/NCBI | |
Nakajima M, Shinoda I, Fukuwatari Y and Hayasawa H: Arbutin increases the pigmentation of cultured human melanocytes through mechanisms other than the induction of tyrosinase activity. Pigment Cell Res. 11:12–17. 1998. View Article : Google Scholar : PubMed/NCBI | |
Palumbo A, d'Ischia M, Misuraca G and Prota G: Mechanism of inhibition of melanogenesis by hydroquinone. Biochim Biophys Acta. 1073:85–90. 1991. View Article : Google Scholar : PubMed/NCBI | |
Smith CJ, O'Hare KB and Allen JC: Selective cytotoxicity of hydroquinone for melanocyte-derived cells is mediated by tyrosinase activity but independent of melanin content. Pigment Cell Res. 1:386–389. 1988. View Article : Google Scholar : PubMed/NCBI | |
Wang X and Zhang Y: Resveratrol alleviates LPS-induced injury in human keratinocyte cell line HaCaT by up-regulation of miR-17. Biochem Biophys Res Commun. 501:106–112. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kim ES, Chang H, Choi H, Shin JH, Park SJ, Jo YK, Choi ES, Baek SY, Kim BG, Chang JW, et al: Autophagy induced by resveratrol suppresses a-MSH-induced melanogenesis. Exp Dermatol. 23:204–206. 2014. View Article : Google Scholar : PubMed/NCBI | |
Salzes C, Abadie S, Seneschal J, Whitton M, Meurant JM, Jouary T, Ballanger F, Boralevi F, Taieb A, Taieb C and Ezzedine K: The vitiligo impact patient scale (VIPs): Development and validation of a vitiligo burden assessment tool. J Invest Dermatol. 136:52–58. 2016. View Article : Google Scholar : PubMed/NCBI | |
Moretti S, Spallanzani A, Amato L, Hautmann G, Gallerani I, Fabiani M and Fabbri P: New insights into the pathogenesis of vitiligo: Imbalance of epidermal cytokines at sites of lesions. Pigment Cell Res. 15:87–92. 2002. View Article : Google Scholar : PubMed/NCBI | |
Moretti S, Fabbri P, Baroni G, Berti S, Bani D, Berti E, Nassini R, Lotti T and Massi D: Keratinocyte dysfunction in vitiligo epidermis: Cytokine microenvironment and correlation to keratinocyte apoptosis. Histol Histopathol. 24:849–857. 2009.PubMed/NCBI | |
Kim NH, Jeon S, Lee HJ and Lee AY: Impaired PI3K/Akt activation-mediated NF-kappaB inactivation under elevated TNF-alpha is more vulnerable to apoptosis in vitiliginous keratinocytes. J Invest Dermatol. 127:2612–2617. 2007. View Article : Google Scholar : PubMed/NCBI | |
Barygina V, Becatti M, Lotti T, Moretti S, Taddei N and Fiorillo C: Treatment with low-dose cytokines reduces oxidative-mediated injury in perilesional keratinocytes from vitiligo skin. J Dermatol Sci. 79:163–170. 2015. View Article : Google Scholar : PubMed/NCBI | |
Debbaneh MG, Levin E, Sanchez Rodriguez R, Leon A, Koo J and Rosenblum MD: Plaque-based sub-blistering dosimetry: Reaching PASI-75 after two treatments with 308-nm excimer laser in a generalized psoriasis patient. J Dermatolog Treat. 26:45–48. 2015. View Article : Google Scholar : PubMed/NCBI | |
Grimes P, Morris R, Avaniss-Aghajani E, Soriano T, Meraz M and Metzger A: Topical tacrolimus therapy for vitiligo: Therapeutic responses and skin messenger RNA expression of proinflammatory cytokines. J Am Acad Dermatol. 51:52–61. 2004. View Article : Google Scholar : PubMed/NCBI | |
Sakuma S, Higashi Y, Sato N, Sasakawa T, Sengoku T, Ohkubo Y, Amaya T and Goto T: Tacrolimus suppressed the production of cytokines involved in atopic dermatitis by direct stimulation of human PBMC system. (Comparison with steroids). Int Immunopharmacol. 1:1219–1226. 2001. View Article : Google Scholar : PubMed/NCBI | |
Birol A, Kisa U, Kurtipek GS, Kara F, Kocak M, Erkek E and Caglayan O: Increased tumor necrosis factor alpha (TNF-alpha) and interleukin 1 alpha (IL1-alpha) levels in the lesional skin of patients with nonsegmental vitiligo. Int J Dermatol. 45:992–993. 2006. View Article : Google Scholar : PubMed/NCBI | |
Alghamdi K and Khurrum H: Methotrexate for the treatment of generalized vitiligo. Saudi Pharm J. 21:423–424. 2013. View Article : Google Scholar : PubMed/NCBI | |
Grimes PE, Hamzavi I, Lebwohl M, Ortonne JP and Lim HW: The efficacy of afamelanotide and narrowband UV-B phototherapy for repigmentation of vitiligo. JAMA Dermatol. 149:68–73. 2013. View Article : Google Scholar : PubMed/NCBI |