1
|
Bagshaw SM, George C and Bellomo R; ANZICS
Database Management Committee, : Early acute kidney injury and
sepsis: A multicentre evaluation. Crit Care. 12:R472008. View Article : Google Scholar : PubMed/NCBI
|
2
|
Vincent JL, Sakr Y, Sprung CL, Ranieri VM,
Reinhart K, Gerlach H, Moreno R, Carlet J, Le Gall JR and Payen D;
Sepsis Occurrence in Acutely Ill Patients Investigators, : Sepsis
in European intensive care units: Results of the SOAP study. Crit
Care Med. 34:344–353. 2006. View Article : Google Scholar : PubMed/NCBI
|
3
|
Raghavan M and Kellum JA: Acute kidney
injury: What's the prognosis? Nat Rev Nephrol. 7:209–217. 2011.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Gottlieb RA: Autophagy in Health and
Disease. Elsevier; Amsterdam: pp. 72–78. 2015
|
5
|
Glick D, Barth S and Macleod KF:
Autophagy: Cellular and molecular mechanisms. J Pathol. 221:3–12.
2010. View Article : Google Scholar : PubMed/NCBI
|
6
|
Mizushima N and Komatsu M: Autophagy:
Renovation of cells and tissues. Cell. 147:728–741. 2011.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Mizushima N, Levine B, Cuervo AM and
Klionsky DJ: Autophagy fights disease through cellular
self-digestion. Nature. 451:1069–1075. 2008. View Article : Google Scholar : PubMed/NCBI
|
8
|
Randow F and Youle RJ: Self and nonself:
How autophagy targets mitochondria and bacteria. Cell Host Microbe.
15:403–411. 2014. View Article : Google Scholar : PubMed/NCBI
|
9
|
Maejima I, Takahashi A, Omori H, Kimura T,
Takabatake Y, Saitoh T, Yamamoto A, Hamasaki M, Noda T, Isaka Y and
Yoshimori T: Autophagy sequesters damaged lysosomes to control
lysosomal biogenesis and kidney injury. EMBO J. 32:2336–2347. 2013.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Lenoir O, Tharaux PL and Huber TB:
Autophagy in kidney disease and aging: Lessons from rodent models.
Kidney Int. 90:950–964. 2016. View Article : Google Scholar : PubMed/NCBI
|
11
|
Takabatake Y, Kimura T, Takahashi A and
Isaka Y: Autophagy and the kidney: Health and disease. Nephrol Dial
Transplant. 29:1639–1647. 2014. View Article : Google Scholar : PubMed/NCBI
|
12
|
Hartleben B, Gödel M, Meyer-Schwesinger C,
Liu S, Ulrich T, Köbler S, Wiech T, Grahammer F, Arnold SJ,
Lindenmeyer MT, et al: Autophagy influences glomerular disease
susceptibility and maintains podocyte homeostasis in aging mice. J
Clin Inves. 120:1084–1096. 2010. View
Article : Google Scholar
|
13
|
Kimura T, Takabatake Y, Takahashi A,
Kaimori JY, Matsui I, Namba T, Kitamura H, Niimura F, Matsusaka T,
Soga T, et al: Autophagy protects the proximal tubule from
degeneration and acute ischemic injury. J Am Soc Nephrol.
22:902–913. 2011. View Article : Google Scholar : PubMed/NCBI
|
14
|
Kume S, Thomas MC and Koya D: Nutrient
sensing, autophagy and diabetic nephropathy. Diabetes. 61:23–29.
2012. View Article : Google Scholar : PubMed/NCBI
|
15
|
Kume S, Uzu T, Maegawa H and Koya D:
Autophagy: A novel therapeutic target for kidney diseases. Clin Exp
Nephrol. 16:827–832. 2012. View Article : Google Scholar : PubMed/NCBI
|
16
|
Huber TB, Edelstein CL, Hartleben B, Inoki
K, Jiang M, Koya D, Kume S, Lieberthal W, Pallet N, Quiroga A, et
al: Emerging role of autophagy in kidney function, diseases and
aging. Autophagy. 8:1009–1031. 2012. View Article : Google Scholar : PubMed/NCBI
|
17
|
Thomas W and Huber TB: Implications of
autophagy for glomerular aging and disease. Cell Tissue Res.
343:467–473. 2011. View Article : Google Scholar : PubMed/NCBI
|
18
|
Mizushima N, Noda T, Yoshimori T, Tanaka
Y, Ishii T, George MD, Klionsky DJ, Ohsumi M and Ohsumi Y: A
protein conjugation system essential for autophagy. Nature.
395:395–398. 1998. View
Article : Google Scholar : PubMed/NCBI
|
19
|
Yang Z and Klionsky DJ: Mammalian
autophagy: Core molecular machinery and signaling regulation. Curr
Opin Cell Biol. 22:124–131. 2010. View Article : Google Scholar : PubMed/NCBI
|
20
|
Boya P, Reggiori F and Codogno P: Emerging
regulation and functions of autophagy. Nat Cell Biol. 15:713–720.
2013. View
Article : Google Scholar : PubMed/NCBI
|
21
|
Yang Z and Klionsky DJ: Eaten alive: A
history of macroautophagy. Nat Cell Biol. 12:814–822. 2010.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Mizushima N: The role of the Atg1/ULK1
complex in autophagy regulation. Curr Opin Cell Biol. 22:132–139.
2010. View Article : Google Scholar : PubMed/NCBI
|
23
|
Mizushima N and Levine B: Autophagy in
mammalian development and differentiation. Nat Cell Biol.
12:823–830. 2010. View Article : Google Scholar : PubMed/NCBI
|
24
|
Xu X, Pan J, Li H, Li X, Fang F, Wu D,
Zhou Y, Zheng P, Xiong L and Zhang D: Atg7 mediates renal tubular
cell apoptosis in vancomycin nephrotoxicity through activation of
PKC-δ. FASEB J. 33:4513–4524. 2019. View Article : Google Scholar : PubMed/NCBI
|
25
|
Johnston RJ and Hobert O: A microRNA
controlling left/right neuronal asymmetry in Caenorhabditis
elegans. Nature. 426:845–849. 2003. View Article : Google Scholar : PubMed/NCBI
|
26
|
Kim VN: MicroRNA biogenesis: Coordinated
cropping and dicing. Nat Rev Mol Cell Biol. 6:376–385. 2005.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Brennecke J, Hipfner DR, Stark A, Russell
RB and Cohen SM: Bantam encodes a developmentally regulated
microRNA that controls cell proliferation and regulates the
proapoptotic gene hid in Drosophila. Cell. 113:25–36. 2003.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Kumar S and Reddy PH: Are circulating
microRNAs peripheral biomarkers for Alzheimer's disease? Biochim
Biophys Acta. 1862:1617–1627. 2016. View Article : Google Scholar : PubMed/NCBI
|
29
|
Kumar S and Reddy PH: MicroRNA-455-3p as a
potential biomarker for Alzheimer's disease: An update. Front Aging
Neurosci. 10:412018. View Article : Google Scholar : PubMed/NCBI
|
30
|
Kumar S, Chawla YK, Ghosh S and
Chakraborti A: Severity of hepatitis C virus (genotype-3) infection
positively correlates with circulating microRNA-122 in patients
sera. Dis Markers. 2014:4354762014. View Article : Google Scholar : PubMed/NCBI
|
31
|
Kumar S, Reddy AP, Yin X and Reddy PH:
Novel MicroRNA-455-3p and its protective effects against abnormal
APP processing and amyloid beta toxicity in Alzheimer's disease.
Biochim Biophys Acta Mol Basis Dis. 1865:2428–2440. 2019.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Qadir MI and Faheem A: miRNA: A diagnostic
and therapeutic tool for pancreatic cancer. Crit Rev Eukaryot Gene
Expr. 27:197–204. 2017. View Article : Google Scholar : PubMed/NCBI
|
33
|
Armand-Labit V and Pradines A: Circulating
cell-free microRNAs as clinical cancer biomarkers. Biomol Concepts.
8:61–81. 2017. View Article : Google Scholar : PubMed/NCBI
|
34
|
Kumarswamy R, Volkmann I and Thum T:
Regulation and function of miRNA-21 in health and disease. RNA
Biol. 8:706–713. 2011. View Article : Google Scholar : PubMed/NCBI
|
35
|
Mishra S, Yadav T and Rani V: Exploring
miRNA based approaches in cancer diagnostics and therapeutics. Crit
Rev Oncol Hematol. 98:12–23. 2016. View Article : Google Scholar : PubMed/NCBI
|
36
|
Baker MA, Davis SJ, Liu P, Pan X, Williams
AM, Iczkowski KA, Gallagher ST, Bishop K, Regner KR, Liu Y and
Liang M: Tissue-specific MicroRNA expression patterns in four types
of kidney disease. J Am Soc Nephrol. 28:2985–2992. 2017. View Article : Google Scholar : PubMed/NCBI
|
37
|
Wang Y, Zheng ZJ, Jia YJ, Yang YL and Xue
YM: Role of p53/miR-155-5p/sirt1 loop in renal tubular injury of
diabetic kidney disease. J Transl Med. 16:1462018. View Article : Google Scholar : PubMed/NCBI
|
38
|
de Mendonça A, Vincent JL, Suter PM,
Moreno R, Dearden NM, Antonelli M, Takala J, Sprung C and Cantraine
F: Acute renal failure in the ICU: Risk factors and outcome
evaluated by the SOFA score. Intensive Care Med. 26:915–921. 2000.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Bagshaw SM, George C and Bellomo R; ANZICS
Database Management Committee, : Changes in the incidence and
outcome for early acute kidney injury in a cohort of Australian
intensive care units. Crit Care. 11:R682007. View Article : Google Scholar : PubMed/NCBI
|
40
|
Sharma A, Simonson TJ, Jondle CN, Mishra
BB and Sharma J: Mincle-mediated neutrophil extracellular trap
formation by regulation of autophagy. J Infect Dis. 215:1040–1048.
2017. View Article : Google Scholar : PubMed/NCBI
|
41
|
Crowell KT, Soybel DI and Lang CH:
Inability to replete white adipose tissue during the recovery phase
of sepsis is associated with increased autophagy, apoptosis, and
proteasome activity. Am J Physiol Regul Integr Comp Physiol.
312:R388–R399. 2017. View Article : Google Scholar : PubMed/NCBI
|
42
|
Park SY, Shrestha S, Youn YJ, Kim JK, Kim
SY, Kim HJ, Park SH, Ahn WG, Kim S, Lee MG, et al: Autophagy primes
neutrophils for neutrophil extracellular trap formation during
sepsis. Am J Respir Crit Care Med. 196:577–589. 2017. View Article : Google Scholar : PubMed/NCBI
|
43
|
Kaucsár T, Révész C, Godó M, Krenács T,
Albert M, Szalay CI, Rosivall L, Benyó Z, Bátkai S, Thum T, et al:
Activation of the miR-17 family and miR-21 during murine kidney
ischemia-reperfusion injury. Nucleic Acid Ther. 23:344–354. 2013.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Ma L, Wu K, Liu K, Gu S, Wang Y, Xu Z, Yu
X and Meng J: Changes of miRNA-17-5p, miRNA-21 and miRNA-106a level
during rat kidney ischemia-reperfusion injury. Zhonghua Yi Xue Za
Zhi. 95:1488–1492. 2015.(In Chinese). PubMed/NCBI
|
45
|
Hu H, Jiang W, Xi X, Zou C and Ye Z:
MicroRNA-21 attenuates renal ischemia reperfusion injury via
targeting caspase signaling in mice. Am J Nephrol. 40:215–223.
2014. View Article : Google Scholar : PubMed/NCBI
|
46
|
Chau BN, Xin C, Hartner J, Ren S, Castano
AP, Linn G, Li J, Tran PT, Kaimal V, Huang X, et al: MicroRNA-21
promotes fibrosis of the kidney by silencing metabolic pathways.
Sci Transl Med. 4:121ra182012. View Article : Google Scholar : PubMed/NCBI
|