1
|
Ellenberg D, Azar DT, Hallak JA, Tobaigy
F, Han KY, Jain S, Zhou Z and Chang JH: Novel aspects of corneal
angiogenic and lymphangiogenic privilege. Prog Retin Eye Res.
29:208–248. 2010. View Article : Google Scholar : PubMed/NCBI
|
2
|
Zhang SX and Ma JX: Ocular
neovascularization: Implication of endogenous angiogenic inhibitors
and potential therapy. Prog Retin Eye Res. 26:1–37. 2007.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Qazi Y, Wong G, Monson B, Stringham J and
Ambati BK: Corneal transparency: Genesis, maintenance and
dysfunction. Brain Res Bull. 81:198–210. 2010. View Article : Google Scholar : PubMed/NCBI
|
4
|
Fu YC and Xin ZM: Inhibited corneal
neovascularization in rabbits following corneal alkali burn by
double-target interference for VEGF and HIF-1α. Biosci Rep.
39(pii): BSR201805522019. View Article : Google Scholar : PubMed/NCBI
|
5
|
Qazi Y, Maddula S and Ambati BK: Mediators
of ocular angiogenesis. J Genet. 88:495–515. 2009. View Article : Google Scholar : PubMed/NCBI
|
6
|
Maddula S, Davis DK, Maddula S, Burrow MK
and Ambati BK: Horizons in therapy for corneal angiogenesis.
Ophthalmology. 118:591–599. 2011. View Article : Google Scholar : PubMed/NCBI
|
7
|
Sene A, Chin-Yee D and Apte RS: Seeing
through VEGF: Innate and adaptive immunity in pathological
angiogenesis in the eye. Trends Mol Med. 21:43–51. 2015. View Article : Google Scholar : PubMed/NCBI
|
8
|
Roshandel D, Eslani M, Baradaran-Rafii A,
Cheung AY, Kurji K, Jabbehdari S, Maiz A, Jalali S, Djalilian AR
and Holland EJ: Current and emerging therapies for corneal
neovascularization. Ocul Surf. 16:398–414. 2018. View Article : Google Scholar : PubMed/NCBI
|
9
|
Bock F, Maruyama K, Regenfuss B, Hos D,
Steven P, Heindl LM and Cursiefen C: Novel anti(lymph)angiogenic
treatment strategies for corneal and ocular surface diseases. Prog
Retin Eye Res. 34:89–124. 2013. View Article : Google Scholar : PubMed/NCBI
|
10
|
Poulaki V, Mitsiades N, Kruse FE, Radetzky
S, Iliaki E, Kirchhof B and Joussen AM: Activin a in the regulation
of corneal neovascularization and vascular endothelial growth
factor expression. Am J Pathol. 164:1293–1302. 2004. View Article : Google Scholar : PubMed/NCBI
|
11
|
Apte RS, Chen DS and Ferrara N: VEGF in
signaling and disease: Beyond discovery and development. Cell.
176:1248–1264. 2019. View Article : Google Scholar : PubMed/NCBI
|
12
|
Eilken HM and Adams RH: Dynamics of
endothelial cell behavior in sprouting angiogenesis. Curr Opin Cell
Biol. 22:617–625. 2010. View Article : Google Scholar : PubMed/NCBI
|
13
|
Hoeben A, Landuyt B, Highley MS, Wildiers
H, Van Oosterom AT and De Bruijn EA: Vascular endothelial growth
factor and angiogenesis. Pharmacol Rev. 56:549–580. 2004.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Ferrara N, Gerber HP and LeCouter J: The
biology of VEGF and its receptors. Nat Med. 9:669–676. 2003.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Varricchi G, Loffredo S, Galdiero MR and
Marone G, Cristinziano L, Granata F and Marone G: Innate effector
cells in angiogenesis and lymphangiogenesis. Curr Opin Immunol.
53:152–160. 2018. View Article : Google Scholar : PubMed/NCBI
|
16
|
Shen G, Li Y, Du T, Shi G, Dai L, Chen X,
Zheng R, Li W, Su X, Zhang S, et al: SKLB1002, a novel inhibitor of
VEGF receptor 2 signaling, induces vascular normalization to
improve systemically administered chemotherapy efficacy. Neoplasma.
59:486–493. 2012. View Article : Google Scholar : PubMed/NCBI
|
17
|
Li WW, Chen JJ, Zheng RL, Zhang WQ, Cao
ZX, Yang LL, Qing XY, Zhou LX, Yang L, Yu LD, et al: Taking
quinazoline as a general support-Nog to design potent and selective
kinase inhibitors: application to FMS-like tyrosine kinase 3. Chem
Med Chem. 5:513–516. 2010. View Article : Google Scholar : PubMed/NCBI
|
18
|
Zhang S, Cao Z, Tian H, Shen G, Ma Y, Xie
H, Liu Y, Zhao C, Deng S, Yang Y, et al: SKLB1002, a novel potent
inhibitor of VEGF receptor 2 signaling, inhibits angiogenesis and
tumor growth in vivo. Clin Cancer Res. 17:4439–4450. 2011.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Bignami F, Lorusso A, Rama P and Ferrari
G: Growth inhibition of formed corneal neovascularization following
Fosaprepitant treatment. Acta Ophthalmol. 95:e641–e648. 2017.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Skobe M and Dana R: Blocking the path of
lymphatic vessels. Nat Med. 15:993–994. 2009. View Article : Google Scholar : PubMed/NCBI
|
21
|
Tolentino MJ: Current molecular
understanding and future treatment strategies for pathologic ocular
neovascularization. Curr Mol Med. 9:973–981. 2009. View Article : Google Scholar : PubMed/NCBI
|
22
|
Liu S, Romano V, Steger B, Kaye SB, Hamill
KJ and Willoughby CE: Gene-based antiangiogenic applications for
corneal neovascularization. Surv Ophthalmol. 63:193–213. 2018.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Zhong W, Montana M, Santosa SM, Isjwara
ID, Huang YH, Han KY, O'Neil C, Wang A, Cortina MS, de la Cruz J,
et al: Angiogenesis and lymphangiogenesis in corneal
transplantation-A review. Surv Ophthalmol. 63:453–479. 2018.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Nominato LF, Dias AC, Dias LC, Fantucci
MZ, Mendes da Silva LEC, Murashima AA and Rocha EM: Prevention of
corneal neovascularization by adenovirus encoding human vascular
endothelial growth factor soluble receptor (s-VEGFR1) in lacrimal
gland. Invest Ophthalmol Vis Sci. 59:6036–6044. 2018. View Article : Google Scholar : PubMed/NCBI
|
25
|
Lee JE, Kim KL, Kim D, Yeo Y, Han H, Kim
MG, Kim SH, Kim H, Jeong JH and Suh W: Apatinib-loaded
nanoparticles suppress vascular endothelial growth factor-induced
angiogenesis and experimental corneal neovascularization. Int J
Nanomedicine. 12:4813–4822. 2017. View Article : Google Scholar : PubMed/NCBI
|
26
|
Chang JH, Garg NK, Lunde E, Han KY, Jain S
and Azar DT: Corneal neovascularization: An anti-VEGF therapy
review. Surv Ophthalmol. 57:415–429. 2012. View Article : Google Scholar : PubMed/NCBI
|
27
|
Friedman M, Azrad-Lebovitz T, Morzaev D,
Zahavi A, Marianayagam NJ, Nicholson JD, Brookman M, Michowiz S,
Hochhauser E and Goldenberg-Cohen N: Protective effect of TLR4
ablation against corneal neovascularization following chemical burn
in a mouse model. Curr Eye Res. 44:505–513. 2019. View Article : Google Scholar : PubMed/NCBI
|
28
|
van Wijngaarden P, Coster DJ and Williams
KA: Inhibitors of ocular neovascularization: Promises and potential
problems. JAMA. 293:1509–1513. 2005. View Article : Google Scholar : PubMed/NCBI
|
29
|
Menzel-Severing J: Emerging techniques to
treat corneal neovascularisation. Eye (Lond). 26:2–12. 2012.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Chang CY, Wang MC, Miyagawa T, Chen ZY,
Lin FH, Chen KH, Liu GS and Tseng CL: Preparation of
arginine-glycine-aspartic acid-modified biopolymeric nanoparticles
containing epigalloccatechin-3-gallate for targeting vascular
endothelial cells to inhibit corneal neovascularization. Int J
Nanomedicine. 12:279–294. 2017. View Article : Google Scholar : PubMed/NCBI
|
31
|
Urtti A: Challenges and obstacles of
ocular pharmacokinetics and drug delivery. Adv Drug Deliv Rev.
58:1131–1135. 2006. View Article : Google Scholar : PubMed/NCBI
|
32
|
Kisielewska J, Ligeza J and Klein A: The
effect of tyrosine kinase inhibitors, tyrphostins: AG1024 and
SU1498, on autocrine growth of prostate cancer cells (DU145). Folia
Histochem Cytobiol. 46:185–191. 2008. View Article : Google Scholar : PubMed/NCBI
|
33
|
De Bock K, Georgiadou M and Carmeliet P:
Role of endothelial cell metabolism in vessel sprouting. Cell
Metab. 18:634–647. 2013. View Article : Google Scholar : PubMed/NCBI
|
34
|
Siemerink MJ, Augustin AJ and Schlingemann
RO: Mechanisms of ocular angiogenesis and its molecular mediators.
Dev Ophthalmol. 46:4–20. 2010. View Article : Google Scholar : PubMed/NCBI
|
35
|
Eelen G, de Zeeuw P, Simons M and
Carmeliet P: Endothelial cell metabolism in normal and diseased
vasculature. Circ Res. 116:1231–1244. 2015. View Article : Google Scholar : PubMed/NCBI
|
36
|
Shi W, Liu J, Li M, Gao H and Wang T:
Expression of MMP, HPSE, and FAP in stroma promoted corneal
neovascularization induced by different etiological factors. Curr
Eye Res. 35:967–977. 2010. View Article : Google Scholar : PubMed/NCBI
|
37
|
Adams RH and Alitalo K: Molecular
regulation of angiogenesis and lymphangiogenesis. Nat Rev Mol Cell
Biol. 8:464–478. 2007. View Article : Google Scholar : PubMed/NCBI
|
38
|
Olsson AK, Dimberg A, Kreuger J and
Claesson-Welsh L: VEGF receptor signalling-in control of vascular
function. Nat Rev Mol Cell Biol. 7:359–371. 2006. View Article : Google Scholar : PubMed/NCBI
|
39
|
Cross MJ and Claesson-Welsh L: FGF and
VEGF function in angiogenesis: Signalling pathways, biological
responses and therapeutic inhibition. Trends Pharmacol Sci.
22:201–207. 2001. View Article : Google Scholar : PubMed/NCBI
|
40
|
Cargnello M and Roux PP: Activation and
function of the MAPKs and their substrates, the MAPK-activated
protein kinases. Microbiol Mol Biol Rev. 75:50–83. 2011. View Article : Google Scholar : PubMed/NCBI
|
41
|
Arthur JS and Ley SC: Mitogen-activated
protein kinases in innate immunity. Nat Rev Immunol. 13:679–692.
2013. View Article : Google Scholar : PubMed/NCBI
|
42
|
Simons M, Gordon E and Claesson-Welsh L:
Mechanisms and regulation of endothelial VEGF receptor signalling.
Nat Rev Mol Cell Biol. 17:611–625. 2016. View Article : Google Scholar : PubMed/NCBI
|
43
|
del Barco Barrantes I and Nebreda AR:
Roles of p38 MAPKs in invasion and metastasis. Biochem Soc Trans.
40:79–84. 2012. View Article : Google Scholar : PubMed/NCBI
|
44
|
Penn JS, Madan A, Caldwell RB, Bartoli M,
Caldwell RW and Hartnett ME: Vascular endothelial growth factor in
eye disease. Prog Retin Eye Res. 27:331–371. 2008. View Article : Google Scholar : PubMed/NCBI
|
45
|
Sehgal V and Ram PT: Network Motifs in JNK
Signaling. Genes Cancer. 4:409–413. 2013. View Article : Google Scholar : PubMed/NCBI
|
46
|
Kim EK and Choi EJ: Pathological roles of
MAPK signaling pathways in human diseases. Biochim Biophys Acta.
1802:396–405. 2010. View Article : Google Scholar : PubMed/NCBI
|