1
|
Schilling LP, Pascoal TA, Zimmer ER,
Mathotaarachchi S, Shin M, de Mello Rieder CR, Gauthier S, Palmini
A and Rosa-Neto P; Alzheimer's Disease Neuroimaging Initiative, :
Regional Amyloid-β load and white matter abnormalities contribute
to hypometabolism in Alzheimer's dementia. Mol Neurobiol.
56:4916–4924. 2019. View Article : Google Scholar : PubMed/NCBI
|
2
|
Karran E, Mercken M and De Strooper B: The
amyloid cascade hypothesis for Alzheimer's disease: An appraisal
for the development of therapeutics. Nat Rev Drug Discov.
10:698–712. 2011. View
Article : Google Scholar : PubMed/NCBI
|
3
|
Glabe CG and Kayed R: Common structure and
toxic function of amyloid oligomers implies a common mechanism of
pathogenesis. Neurology. 66 (2 Suppl 1):S74–S78. 2006. View Article : Google Scholar : PubMed/NCBI
|
4
|
Saito T, Hisahara S, Iwahara N, Emoto MC,
Yokokawa K, Suzuki H, Manabe T, Matsumura A, Suzuki S, Matsushita
T, et al: Early administration of galantamine from preplaque phase
suppresses oxidative stress and improves cognitive behavior in
APPswe/PS1dE9 mouse model of Alzheimer's disease. Free Radic Biol
Med. 145:20–32. 2019. View Article : Google Scholar : PubMed/NCBI
|
5
|
Sidoryk-Wegrzynowicz M, Wegrzynowicz M,
Lee E, Bowman AB and Aschner M: Role of astrocytes in brain
function and disease. Toxicol Pathol. 39:115–123. 2011. View Article : Google Scholar : PubMed/NCBI
|
6
|
Alberini CM, Cruz E, Descalzi G, Bessieres
B and Gao V: Astrocyte glycogen and lactate: New insights into
learning and memory mechanisms. Glia. 66:1244–1262. 2018.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Steinman MQ, Gao V and Alberini CM: The
role of lactate-mediated metabolic coupling between astrocytes and
neurons in long-term memory formation. Front Integr Neurosci.
10:102016. View Article : Google Scholar : PubMed/NCBI
|
8
|
Nielsen HM, Veerhuis R, Holmqvist B and
Janciauskiene S: Binding and uptake of A beta1-42 by primary human
astrocytes in vitro. Glia. 57:978–988. 2009. View Article : Google Scholar : PubMed/NCBI
|
9
|
Pihlaja R, Koistinaho J, Malm T, Sikkilä
H, Vainio S and Koistinaho M: Transplanted astrocytes internalize
deposited beta-amyloid peptides in a transgenic mouse model of
Alzheimer's disease. Glia. 56:154–163. 2008. View Article : Google Scholar : PubMed/NCBI
|
10
|
Jabbari Azad F, Talaei A, Rafatpanah H,
Yousefzadeh H, Jafari R, Talaei A and Farid Hosseini R: Association
between Cytokine production and disease severity in Alzheimer's
disease. Iran J Allergy Asthma Immunol. 13:433–439. 2014.PubMed/NCBI
|
11
|
Hoskin JL, Al-Hasan Y and Sabbagh MN:
Nicotinic acetylcholine receptor agonists for the treatment of
Alzheimer's dementia: An update. Nicotine Tob Res. 21:370–376.
2019. View Article : Google Scholar : PubMed/NCBI
|
12
|
Broide RS, Winzer-Serhan UH, Chen Y and
Leslie FM: Distribution of α7 nicotinic acetylcholine receptor
subunit mRNA in the developing mouse. Front Neuroanat. 13:762019.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Parri HR, Hernandez CM and Dineley KT:
Research update: Alpha7 nicotinic acetylcholine receptor mechanisms
in Alzheimer's disease. Biochem Pharmacol. 82:931–942. 2011.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Yu WF, Guan ZZ, Bogdanovic N and Nordberg
A: High selective expression of alpha7 nicotinic receptors on
astrocytes in the brains of patients with sporadic Alzheimer's
disease and patients carrying Swedish APP 670/671 mutation: A
possible association with neuritic plaques. Exp Neurol.
192:215–225. 2005. View Article : Google Scholar : PubMed/NCBI
|
15
|
Yu W, Mechawar N, Krantic S, Chabot JG and
Quirion R: Upregulation of astrocytic α7 nicotinic receptors in
Alzheimer's disease brain-possible relevant to amyloid pathology.
Mol Neurodegener. 7 (Suppl 1):O72012. View Article : Google Scholar
|
16
|
Shammas SL, Waudby CA, Wang S, Buell AK,
Knowles TP, Ecroyd H, Welland ME, Carver JA, Dobson CM and Meehan
S: Binding of the molecular chaperone αB-crystallin to Aβ amyloid
fibrils inhibits fibril elongation. Biophys J. 101:1681–1689. 2011.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Wilhelmus MM, Boelens WC, Otte-Höller I,
Kamps B, de Waal RM and Verbeek MM: Small heat shock proteins
inhibit amyloid-beta protein aggregation and cerebrovascular
amyloid-beta protein toxicity. Brain Res. 1089:67–78. 2006.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Raman B, Ban T, Sakai M, Pasta SY,
Ramakrishna T, Naiki H, Goto Y and Rao ChM: AlphaB-crystallin, a
small heat-shock protein, prevents the amyloid fibril growth of an
amyloid beta-peptide and beta2-microglobulin. Biochem J.
392:573–581. 2005. View Article : Google Scholar : PubMed/NCBI
|
19
|
Volovik Y, Moll L, Marques FC, Maman M,
Bejerano-Sagie M and Cohen E: Differential regulation of the heat
shock factor 1 and DAF-16 by neuronal nhl-1 in the nematode C.
elegans. Cell Rep. 9:2192–2205. 2014. View Article : Google Scholar : PubMed/NCBI
|
20
|
McCarthy KD and de Vellis J: Preparation
of separate astroglial and oligodendroglial cell cultures from rat
cerebral tissue. J Cell Biol. 85:890–902. 1980. View Article : Google Scholar : PubMed/NCBI
|
21
|
Klein WL: Abeta toxicity in Alzheimer's
disease: Globular oligomers (ADDLs) as new vaccine and drug
targets. Neurochem Int. 41:345–352. 2002. View Article : Google Scholar : PubMed/NCBI
|
22
|
Rönicke R, Mikhaylova M, Rönicke S,
Meinhardt J, Schröder UH, Fändrich M, Reiser G, Kreutz MR and
Reymann KG: Early neuronal dysfunction by amyloid β oligomers
depends on activation of NR2B-containing NMDA receptors. Neurobiol
Aging. 32:2219–2228. 2011. View Article : Google Scholar : PubMed/NCBI
|
23
|
Kihara T, Shimohama S, Urushitani M,
Sawada H, Kimura J, Kume T, Maeda T and Akaike A: Stimulation of
alpha4beta2 nicotinic acetylcholine receptors inhibits beta-amyloid
toxicity. Brain Res. 792:331–334. 1998. View Article : Google Scholar : PubMed/NCBI
|
24
|
Steiner RC, Heath CJ and Picciotto MR:
Nicotine-induced phosphorylation of ERK in mouse primary cortical
neurons: Evidence for involvement of glutamatergic signaling and
CaMKII. J Neurochem. 103:666–678. 2007. View Article : Google Scholar : PubMed/NCBI
|
25
|
Valle-Casuso JC, Gonzalez-Sanchez A,
Medina JM and Tabernero A: HIF-1 and c-Src mediate increased
glucose uptake induced by endothelin-1 and connexin43 in
astrocytes. PLoS One. 7:e324482012. View Article : Google Scholar : PubMed/NCBI
|
26
|
Herrero-González S, Valle-Casuso JC,
Sánchez-Alvarez R, Giaume C, Medina JM and Tabernero A: Connexin43
is involved in the effect of endothelin-1 on astrocyte
proliferation and glucose uptake. Glia. 57:222–233. 2009.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Yang T, Xiao T, Sun Q and Wang K: The
current agonists and positive allosteric modulators of α7 nAChR for
CNS indications in clinical trials. Acta Pharm Sin B. 7:611–622.
2017. View Article : Google Scholar : PubMed/NCBI
|
28
|
Kalkman HO and Feuerbach D: Modulatory
effects of α7 nAChRs on the immune system and its relevance for CNS
disorders. Cell Mol Life Sci. 73:2511–2530. 2016. View Article : Google Scholar : PubMed/NCBI
|
29
|
Chen T, Wang Y, Zhang T, Zhang B and Chen
L, Zhao L and Chen L: Simvastatin Enhances activity and trafficking
of α7 nicotinic acetylcholine receptor in hippocampal neurons
through PKC and CaMKII signaling pathways. Front Pharmacol.
9:3622018. View Article : Google Scholar : PubMed/NCBI
|
30
|
Mannelli LDC, Tenci B, Zanardelli M,
Failli P and Ghelardini C: α7 nicotinic receptor promotes the
neuroprotective functions of astrocytes against oxaliplatin
neurotoxicity. Neural Plasticity. 2015:1–10. 2015. View Article : Google Scholar
|
31
|
Hardy JA and Higgins GA: Alzheimer's
disease: The amyloid cascade hypothesis. Science. 256:184–185.
1992. View Article : Google Scholar : PubMed/NCBI
|
32
|
Gendron R, Plamondon P and Grenier D:
Binding of pro-matrix metalloproteinase 9 by Fusobacterium
nucleatum subsp. nucleatum as a mechanism to promote the invasion
of a reconstituted basement membrane. Infect Immun. 72:6160–6163.
2004. View Article : Google Scholar : PubMed/NCBI
|
33
|
Gustavo D, Glogowski CM, Eliezer M and
Heinemann SF: Deletion of the α7 nicotinic acetylcholine receptor
gene improves cognitive deficits and synaptic pathology in a mouse
model of Alzheimer's disease. J Neurosci. 29:8805–8815. 2009.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Maiti P, Manna J, Veleri S and Frautschy
S: Molecular chaperone dysfunction in neurodegenerative diseases
and effects of curcumin. Biomed Res Int. 2014:4950912014.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Qi Y, Dou DQ, Jiang H, Zhang BB, Qin WY,
Kang K, Zhang N and Jia D: Arctigenin attenuates learning and
memory deficits through PI3k/Akt/GSK-3β pathway reducing tau
hyperphosphorylation in Aβ-induced AD mice. Planta Med. 83:51–56.
2017.PubMed/NCBI
|