1
|
Criqui MH, Vargas V, Denenberg JO, Ho E,
Allison M, Langer RD, Gamst A, Bundens WP and Fronek A: Ethnicity
and peripheral arterial disease: The San Diego Population Study.
Circulation. 112:2703–2707. 2005. View Article : Google Scholar : PubMed/NCBI
|
2
|
Fowkes FG, Rudan D, Rudan I, Aboyans V,
Denenberg JO, McDermott MM, Norman PE, Sampson UK, Williams LJ,
Mensah GA and Criqui MH: Comparison of global estimates of
prevalence and risk factors for peripheral artery disease in 2000
and 2010: A systematic review and analysis. Lancet. 382:1329–1340.
2013. View Article : Google Scholar : PubMed/NCBI
|
3
|
Crotty S: T Follicular Helper cell
biology: A decade of discovery and diseases. Immunity.
50:1132–1148. 2019. View Article : Google Scholar : PubMed/NCBI
|
4
|
Yu E, Hsu HY, Huang CY and Hwang LC:
Inflammatory biomarkers and risk of atherosclerotic cardiovascular
disease. Open Med (Wars). 13:208–213. 2018. View Article : Google Scholar : PubMed/NCBI
|
5
|
Kim J, Zhang L, Peppel K, Wu JH, Zidar DA,
Brian L, DeWire SM, Exum ST, Lefkowitz RJ and Freedman NJ:
Beta-arrestins regulate atherosclerosis and neointimal hyperplasia
by controlling smooth muscle cell proliferation and migration. Circ
Res. 103:70–79. 2008. View Article : Google Scholar : PubMed/NCBI
|
6
|
Lee J and Kang H: Hypoxia Promotes
vascular smooth muscle cell proliferation through microRNA-mediated
suppression of Cyclin-dependent kinase inhibitors. Cells. 8(pii):
E8022019. View Article : Google Scholar : PubMed/NCBI
|
7
|
Heldin CH and Westermark B: Mechanism of
action and in vivo role of platelet-derived growth factor. Physiol
Rev. 79:1283–1316. 1999. View Article : Google Scholar : PubMed/NCBI
|
8
|
Liu K, Liu C and Zhang Z: lncRNA GAS5 acts
as a ceRNA for miR-21 in suppressing PDGF-bb-induced proliferation
and migration in vascular smooth muscle cells. J Cell Biochem.
120:15233–15240. 2019. View Article : Google Scholar : PubMed/NCBI
|
9
|
Hu W and Huang Y: Targeting the
platelet-derived growth factor signalling in cardiovascular
disease. Clin Exp Pharmacol Physiol. 42:1221–1224. 2015. View Article : Google Scholar : PubMed/NCBI
|
10
|
Zofková I: Osteoporosis and
aterosclerosis-is there any pathogenetic association? Cas Lek Cesk.
146:246–250. 2007.(In Czech). PubMed/NCBI
|
11
|
Hartman J and Frishman WH: Inflammation
and atherosclerosis: A review of the role of interleukin-6 in the
development of atherosclerosis and the potential for targeted drug
therapy. Cardiol Rev. 22:147–151. 2014. View Article : Google Scholar : PubMed/NCBI
|
12
|
Song C, Wang Y, Cui L, Yan F and Shen S:
Triptolide attenuates lipopolysaccharide-induced inflammatory
responses in human endothelial cells: Involvement of NF-κB pathway.
BMC Complement Altern Med. 19:1982019. View Article : Google Scholar : PubMed/NCBI
|
13
|
Ponte E and Ursu HI: Overt and subclinical
hypothyroidism and atherosclerotic arteriopathy of the lower limbs
(clinical and subclinical). Rom J Endocrinol. 31:71–79.
1993.PubMed/NCBI
|
14
|
Hou N, Zhao D, Liu Y, Gao L, Liang X, Liu
X, Gai X, Zhang X, Zhu F, Ni M, et al: Increased expression of T
cell immunoglobulin- and mucin domain-containing molecule-3 on
natural killer cells in atherogenesis. Atherosclerosis. 222:67–73.
2012. View Article : Google Scholar : PubMed/NCBI
|
15
|
Liang X, Xu Z, Yuan M, Zhang Y, Zhao B,
Wang J, Zhang A and Li G: MicroRNA-16 suppresses the activation of
inflammatory macrophages in atherosclerosis by targeting PDCD4. Int
J Mol Med. 37:967–975. 2016. View Article : Google Scholar : PubMed/NCBI
|
16
|
Foks AC, Ran IA, Wasserman L, Frodermann
V, Ter Borg MN, de Jager SC, van Santbrink PJ, Yagita H, Akiba H,
Bot I, et al: T-cell immunoglobulin and mucin domain 3 acts as a
negative regulator of atherosclerosis. Arterioscler Thromb Vasc
Biol. 33:2558–2565. 2013. View Article : Google Scholar : PubMed/NCBI
|
17
|
Qiu MK, Wang SC, Dai YX, Wang SQ, Ou JM
and Quan ZW: PD-1 and Tim-3 pathways regulate CD8+ T cells function
in atherosclerosis. PLoS One. 10:e01285232015. View Article : Google Scholar : PubMed/NCBI
|
18
|
Hu W, Wang M, Yin H, Yao C, He Q, Yin L,
Zhang C, Li W, Chang G and Wang S: MicroRNA-1298 is regulated by
DNA methylation and affects vascular smooth muscle cell function by
targeting connexin 43. Cardiovasc Res. 107:534–545. 2015.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Zhang N, Zhang M, Liu RT, Zhang P, Yang
CL, Yue LT, Li H, Li YK and Duan RS: Statins reduce the expressions
of Tim-3 on NK cells and NKT cells in atherosclerosis. Eur J
Pharmacol. 821:49–56. 2018. View Article : Google Scholar : PubMed/NCBI
|
20
|
Zhang F, Zhao J, Sun D and Wei N: miR-155
inhibits transformation of macrophages into foam cells via
regulating CEH expression. Biomed Pharmacother. 104:645–651. 2018.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Bennett MR, Sinha S and Owens GK: Vascular
smooth muscle cells in atherosclerosis. Circ Res. 118:692–702.
2016. View Article : Google Scholar : PubMed/NCBI
|
22
|
Maracle CX, Agca R, Helder B, Meeuwsen
JAL, Niessen HWM, Biessen EAL, de Winther MPJ, de Jager SCA,
Nurmohamed MT and Tas SW: Noncanonical NF-κB signaling in
microvessels of atherosclerotic lesions is associated with
inflammation, atheromatous plaque morphology and myocardial
infarction. Atherosclerosis. 270:33–41. 2018. View Article : Google Scholar : PubMed/NCBI
|
23
|
Das M, Zhu C and Kuchroo VK: Tim-3 and its
role in regulating anti-tumor immunity. Immunol Rev. 276:97–111.
2017. View Article : Google Scholar : PubMed/NCBI
|
24
|
Sánchez-Fueyo A, Tian J, Picarella D,
Domenig C, Zheng XX, Sabatos CA, Manlongat N, Bender O, Kamradt T,
Kuchroo VK, et al: Tim-3 inhibits T helper type 1-mediated auto-
and alloimmune responses and promotes immunological tolerance. Nat
Immunol. 4:1093–1101. 2003. View
Article : Google Scholar : PubMed/NCBI
|
25
|
Huang SC, Wang M, Wu WB, Wang R, Cui J, Li
W, Li ZL, Li W and Wang SM: miR-22-3p inhibits arterial smooth
muscle cell proliferation and migration and neointimal hyperplasia
by targeting HMGB1 in arteriosclerosis obliterans. Cell Physiol
Biochem. 42:2492–2506. 2017. View Article : Google Scholar : PubMed/NCBI
|
26
|
Andrés V: Control of vascular cell
proliferation and migration by cyclin-dependent kinase signalling:
New perspectives and therapeutic potential. Cardiovasc Res.
63:11–21. 2004. View Article : Google Scholar : PubMed/NCBI
|
27
|
Zhang Y, Qian X, Sun X, Lin C, Jing Y, Yao
Y, Ma Z, Kuai M, Lu Y, Kong X, et al: Liuwei Dihuang, a traditional
Chinese medicinal formula, inhibits proliferation and migration of
vascular smooth muscle cells via modulation of estrogen receptors.
Int J Mol Med. 42:31–40. 2018.PubMed/NCBI
|
28
|
Hao B, Xiao Y, Song F, Long X, Huang J,
Tian M, Deng S and Wu Q: Metformin-induced activation of AMPK
inhibits the proliferation and migration of human aortic smooth
muscle cells through upregulation of p53 and IFI16. Int J Mol Med.
41:1365–1376. 2018.PubMed/NCBI
|
29
|
Qiu MK, Wang SC, Tang Y, Pan C, Wang Y,
Wang SQ, Quan ZW and Ou JM: Tim-3 inhibits low-density
lipoprotein-induced atherogenic responses in human umbilical vein
endothelial cells. Oncotarget. 8:61001–61010. 2017. View Article : Google Scholar : PubMed/NCBI
|
30
|
Ohira H, Tsutsui W and Fujioka Y: Are
Short Chain Fatty Acids in Gut Microbiota defensive players for
inflammation and atherosclerosis. J Atheroscler Thromb. 24:660–672.
2017. View Article : Google Scholar : PubMed/NCBI
|
31
|
Pant S, Deshmukh A, Gurumurthy GS,
Pothineni NV, Watts TE, Romeo F and Mehta JL: Inflammation and
atherosclerosis-revisited. J Cardiovasc Pharmacol Ther. 19:170–178.
2014. View Article : Google Scholar : PubMed/NCBI
|
32
|
Gliozzi M, Scicchitano M, Bosco F,
Musolino V, Carresi C, Scarano F, Maiuolo J, Nucera S, Maretta A,
Paone S, et al: Modulation of nitric oxide synthases by oxidized
LDLs: Role in vascular inflammation and atherosclerosis
development. Int J Mol Sci. 20(pii): E32942019. View Article : Google Scholar : PubMed/NCBI
|
33
|
Pan JX: LncRNA H19 promotes
atherosclerosis by regulating MAPK and NF-κB signaling pathway. Eur
Rev Med Pharmacol Sci. 21:322–328. 2017.PubMed/NCBI
|
34
|
Ge H, Tang H, Liang Y, Wu J, Yang Q, Zeng
L and Ma Z: Rhein attenuates inflammation through inhibition of
NF-κB and NALP3 inflammasome in vivo and in vitro. Drug Des Devel
Ther. 11:1663–1671. 2017. View Article : Google Scholar : PubMed/NCBI
|
35
|
Lai JL, Liu YH, Liu C, Qi MP, Liu RN, Zhu
XF, Zhou QG, Chen YY, Guo AZ and Hu CM: Indirubin inhibits
LPS-induced inflammation via TLR4 abrogation mediated by the NF-κB
and MAPK signaling pathways. Inflammation. 40:1–12. 2017.
View Article : Google Scholar : PubMed/NCBI
|