Diabetic‑induced alterations in hepatic glucose and lipid metabolism: The role of type 1 and type 2 diabetes mellitus (Review)
- Authors:
- Saizhi Jiang
- Jamie L. Young
- Kai Wang
- Yan Qian
- Lu Cai
-
Affiliations: Department of Paediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China, Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA, Department of Paediatrics, Paediatric Research Institute, University of Louisville, Louisville, KY 40202, USA - Published online on: May 22, 2020 https://doi.org/10.3892/mmr.2020.11175
- Pages: 603-611
-
Copyright: © Jiang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Towle HC: Glucose as a regulator of eukaryotic gene transcription. Trends Endocrinol Metab. 16:489–494. 2005. View Article : Google Scholar : PubMed/NCBI | |
Habegger KM, Heppner KM, Geary N, Bartness TJ, DiMarchi R and Tschop MH: The metabolic actions of glucagon revisited. Nat Rev Endocrinol. 6:689–697. 2010. View Article : Google Scholar : PubMed/NCBI | |
Bhatt HB and Smith RJ: Fatty liver disease in diabetes mellitus. Hepatobiliary Surg Nutr. 4:101–108. 2015.PubMed/NCBI | |
Sumida Y and Yoneda M: Glycogen hepatopathy: An under-recognized hepatic complication of uncontrolled type 1 diabetes mellitus. Intern Med. 57:1063–1064. 2018. View Article : Google Scholar : PubMed/NCBI | |
Moore MC, Coate KC, Winnick JJ, An Z and Cherrington AD: Regulation of hepatic glucose uptake and storage in vivo. Adv Nutr. 3:286–294. 2012. View Article : Google Scholar : PubMed/NCBI | |
Petersen MC, Vatner DF and Shulman GI: Regulation of hepatic glucose metabolism in health and disease. Nat Rev Endocrinol. 13:572–587. 2017. View Article : Google Scholar : PubMed/NCBI | |
Dorcely B, Katz K, Jagannathan R, Chiang SS, Oluwadare B, Goldberg IJ and Bergman M: Novel biomarkers for prediabetes, diabetes, and associated complications. Diabetes Metab Syndr Obes. 10:345–361. 2017. View Article : Google Scholar : PubMed/NCBI | |
Rines AK, Sharabi K, Tavares CD and Puigserver P: Targeting hepatic glucose metabolism in the treatment of type 2 diabetes. Nat Rev Drug Discov. 15:786–804. 2016. View Article : Google Scholar : PubMed/NCBI | |
Rui L: Energy metabolism in the liver. Compr Physiol. 4:177–197. 2014. View Article : Google Scholar : PubMed/NCBI | |
Girard J: Glucagon, a key factor in the pathophysiology of type 2 diabetes. Biochimie. 143:33–36. 2017. View Article : Google Scholar : PubMed/NCBI | |
Mittendorfer B and Klein S: Absence of leptin triggers type 1 diabetes. Nat Med. 20:705–706. 2014. View Article : Google Scholar : PubMed/NCBI | |
Unger RH and Orci L: Paracrinology of islets and the paracrinopathy of diabetes. Proc Natl Acad Sci USA. 107:16009–16012. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wewer Albrechtsen NJ, Pedersen J, Galsgaard KD, Winther-Sørensen M, Suppli MP, Janah L, Gromada J, Vilstrup H, Knop FK and Holst JJ: The liver-α cell axis and type 2 diabetes. Endocr Rev. 40:1353–1366. 2019. View Article : Google Scholar : PubMed/NCBI | |
Bergman RN and Iyer MS: Indirect Regulation of endogenous glucose production by insulin: The single gateway hypothesis revisited. Diabetes. 66:1742–1747. 2017. View Article : Google Scholar : PubMed/NCBI | |
Pearson MJ, Unger RH and Holland WL: Clinical trials, triumphs, and tribulations of glucagon receptor antagonists. Diabetes Care. 39:1075–1077. 2016. View Article : Google Scholar : PubMed/NCBI | |
Basco D, Zhang Q, Salehi A, Tarasov A, Dolci W, Herrera P, Spiliotis I, Berney X, Tarussio D, Rorsman P and Thorens B: α-cell glucokinase suppresses glucose-regulated glucagon secretion. Nat Commun. 9:5462018. View Article : Google Scholar : PubMed/NCBI | |
Quesada I, Tuduri E, Ripoll C and Nadal A: Physiology of the pancreatic alpha-cell and glucagon secretion: Role in glucose homeostasis and diabetes. J Endocrinol. 199:5–19. 2008. View Article : Google Scholar : PubMed/NCBI | |
Liu S, Ammirati MJ, Song X, Knafels JD, Zhang J, Greasley SE, Pfefferkorn JA and Qiu X: Insights into mechanism of glucokinase activation: Observation of multiple distinct protein conformations. J Biol Chem. 287:13598–13610. 2012. View Article : Google Scholar : PubMed/NCBI | |
Giordano S, Martocchia A, Toussan L, Stefanelli M, Pastore F, Devito A, Risicato MG, Ruco L and Falaschi P: Diagnosis of hepatic glycogenosis in poorly controlled type 1 diabetes mellitus. World J Diabetes. 5:882–888. 2014. View Article : Google Scholar : PubMed/NCBI | |
Barzilai N and Rossetti L: Role of glucokinase and glucose-6-phosphatase in the acute and chronic regulation of hepatic glucose fluxes by insulin. J Biol Chem. 268:25019–25025. 1993.PubMed/NCBI | |
Holste LC, Connolly CC, Moore MC, Neal DW and Cherrington AD: Physiological changes in circulating glucagon alter hepatic glucose disposition during portal glucose delivery. Am J Physiol. 273:E488–E496. 1997.PubMed/NCBI | |
Ramnanan CJ, Edgerton DS, Kraft G and Cherrington AD: Physiologic action of glucagon on liver glucose metabolism. Diabetes Obes Metab. 13 (Suppl 1):S118–S125. 2011. View Article : Google Scholar | |
Agius L: Glucokinase and molecular aspects of liver glycogen metabolism. Biochem J. 414:1–18. 2008. View Article : Google Scholar : PubMed/NCBI | |
Iozzo P, Hallsten K, Oikonen V, Virtanen KA, Kemppainen J, Solin O, Ferrannini E, Knuuti J and Nuutila P: Insulin-mediated hepatic glucose uptake is impaired in type 2 diabetes: Evidence for a relationship with glycemic control. J Clin Endocrinol Metab. 88:2055–2060. 2003. View Article : Google Scholar : PubMed/NCBI | |
Coate KC, Kraft G, Shiota M, Smith MS, Farmer B, Neal DW, Williams P, Cherrington AD and Moore MC: Chronic overeating impairs hepatic glucose uptake and disposition. Am J Physiol Endocrinol Metab. 308:E860–E867. 2015. View Article : Google Scholar : PubMed/NCBI | |
Watanabe H, Inaba Y, Kimura K, Matsumoto M, Kaneko S, Kasuga M and Inoue H: Sirt2 facilitates hepatic glucose uptake by deacetylating glucokinase regulatory protein. Nat Commun. 9:302018. View Article : Google Scholar : PubMed/NCBI | |
van Dijk TH, van der Sluijs FH, Wiegman CH, Baller JF, Gustafson LA, Burger HJ, Herling AW, Kuipers F, Meijer AJ and Reijngoud DJ: Acute inhibition of hepatic glucose-6-phosphatase does not affect gluconeogenesis but directs gluconeogenic flux toward glycogen in fasted rats. A pharmacological study with the chlorogenic acid derivative S4048. J Biol Chem. 276:25727–25735. 2001. View Article : Google Scholar : PubMed/NCBI | |
Foufelle F and Ferré P: New perspectives in the regulation of hepatic glycolytic and lipogenic genes by insulin and glucose: A role for the transcription factor sterol regulatory element binding protein-1c. Biochem J. 366:377–391. 2002. View Article : Google Scholar : PubMed/NCBI | |
Clore JN, Stillman J and Sugerman H: Glucose-6-phosphatase flux in vitro is increased in type 2 diabetes. Diabetes. 49:969–974. 2000. View Article : Google Scholar : PubMed/NCBI | |
Bandsma RH, Grefhorst A, van Dijk TH, van der Sluijs FH, Hammer A, Reijngoud DJ and Kuipers F: Enhanced glucose cycling and suppressed de novo synthesis of glucose-6-phosphate result in a net unchanged hepatic glucose output in ob/ob mice. Diabetologia. 47:2022–2031. 2004. View Article : Google Scholar : PubMed/NCBI | |
Rooney DP, Neely RD, Beatty O, Bell NP, Sheridan B, Atkinson AB, Trimble ER and Bell PM: Contribution of glucose/glucose 6-phosphate cycle activity to insulin resistance in type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia. 36:106–112. 1993. View Article : Google Scholar : PubMed/NCBI | |
Henly DC, Phillips JW and Berry MN: Suppression of glycolysis is associated with an increase in glucose cycling in hepatocytes from diabetic rats. J Biol Chem. 271:11268–11271. 1996. View Article : Google Scholar : PubMed/NCBI | |
Torres TP, Catlin RL, Chan R, Fujimoto Y, Sasaki N, Printz RL, Newgard CB and Shiota M: Restoration of hepatic glucokinase expression corrects hepatic glucose flux and normalizes plasma glucose in zucker diabetic fatty rats. Diabetes. 58:78–86. 2009. View Article : Google Scholar : PubMed/NCBI | |
Vella A, Freeman JLR, Dunn I, Keller K, Buse JB and Valcarce C: Targeting hepatic glucokinase to treat diabetes with TTP399, a hepatoselective glucokinase activator. Sci Transl Med. 11:eaau34412019. View Article : Google Scholar : PubMed/NCBI | |
Ferrer JC, Favre C, Gomis RR, Fernández-Novell JM, García-Rocha M, de la Iglesia N, Cid E and Guinovart JJ: Control of glycogen deposition. FEBS Lett. 546:127–132. 2003. View Article : Google Scholar : PubMed/NCBI | |
Lin HV and Accili D: Hormonal regulation of hepatic glucose production in health and disease. Cell Metab. 14:9–19. 2011. View Article : Google Scholar : PubMed/NCBI | |
Petersen KF, Laurent D, Rothman DL, Cline GW and Shulman GI: Mechanism by which glucose and insulin inhibit net hepatic glycogenolysis in humans. J Clin Invest. 101:1203–1209. 1998. View Article : Google Scholar : PubMed/NCBI | |
Soares AF, Viega FJ, Carvalho RA and Jones JG: Quantifying hepatic glycogen synthesis by direct and indirect pathways in rats under normal ad libitum feeding conditions. Magn Reson Med. 61:1–5. 2009. View Article : Google Scholar : PubMed/NCBI | |
Agius L, Peak M, Newgard CB, Gomez-Foix AM and Guinovart JJ: Evidence for a role of glucose-induced translocation of glucokinase in the control of hepatic glycogen synthesis. J Biol Chem. 271:30479–30486. 1996. View Article : Google Scholar : PubMed/NCBI | |
Aiston S, Hampson L, Gómez-Foix AM, Guinovart JJ and Agius L: Hepatic glycogen synthesis is highly sensitive to phosphorylase activity: Evidence from metabolic control analysis. J Biol Chem. 276:23858–23866. 2001. View Article : Google Scholar : PubMed/NCBI | |
Matschinsky FM and Magnuson MA: Glucokinase and Glycemic Diseases: From Basics to Novel Therapeutics. Karger; Basel: pp. 1–9. 2004 | |
Satyarengga M, Zubatov Y, Frances S, Narayanswami G and Galindo RJ: Glycogenic hepatopathy: A complication of uncontrolled diabetes. AACE Clin Case Rep. 3:e255–e259. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chatila R and West AB: Hepatomegaly and abnormal liver tests due to glycogenosis in adults with diabetes. Medicine (Baltimore). 75:327–333. 1996. View Article : Google Scholar : PubMed/NCBI | |
Julián MT, Alonso N, Ojanguren I, Pizarro E, Ballestar E and Puig-Domingo M: Hepatic glycogenosis: An underdiagnosed complication of diabetes mellitus? World J Diabetes. 6:321–325. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hwang JH, Perseghin G, Rothman DL, Cline GW, Magnusson I, Petersen KF and Shulman GI: Impaired net hepatic glycogen synthesis in insulin-dependent diabetic subjects during mixed meal ingestion. A 13C nuclear magnetic resonance spectroscopy study. J Clin Invest. 95:783–787. 1995. View Article : Google Scholar : PubMed/NCBI | |
Bischof MG, Krssak M, Krebs M, Bernroider E, Stingl H, Waldhäusl W and Roden M: Effects of short-term improvement of insulin treatment and glycemia on hepatic glycogen metabolism in type 1 diabetes. Diabetes. 50:392–398. 2001. View Article : Google Scholar : PubMed/NCBI | |
Krssak M, Brehm A, Bernroider E, Anderwald C, Nowotny P, Dalla Man C, Cobelli C, Cline GW, Shulman GI, Waldhäusl W and Roden M: Alterations in postprandial hepatic glycogen metabolism in type 2 diabetes. Diabetes. 53:3048–3056. 2004. View Article : Google Scholar : PubMed/NCBI | |
Del Prato S, Bonadonna RC, Bonora E, Gulli G, Solini A, Shank M and DeFronzo RA: Characterization of cellular defects of insulin action in type 2 (non-insulin-dependent) diabetes mellitus. J Clin Invest. 91:484–494. 1993. View Article : Google Scholar : PubMed/NCBI | |
Besford QA, Zeng XY, Ye JM and Gray-Weale A: Liver glycogen in type 2 diabetic mice is randomly branched as enlarged aggregates with blunted glucose release. Glycoconj J. 33:41–51. 2016. View Article : Google Scholar : PubMed/NCBI | |
Samuel VT and Shulman GI: The pathogenesis of insulin resistance: Integrating signaling pathways and substrate flux. J Clin Invest. 126:12–22. 2016. View Article : Google Scholar : PubMed/NCBI | |
Henke BR and Sparks SM: Glycogen phosphorylase inhibitors. Mini Rev Med Chem. 6:845–857. 2006. View Article : Google Scholar : PubMed/NCBI | |
Ha J, Guan KL and Kim J: AMPK and autophagy in glucose/glycogen metabolism. Mol Aspects Med. 46:46–62. 2015. View Article : Google Scholar : PubMed/NCBI | |
Madrigal-Matute J and Cuervo AM: Regulation of liver metabolism by autophagy. Gastroenterology. 150:328–339. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ezaki J, Matsumoto N, Takeda-Ezaki M, Komatsu M, Takahashi K, Hiraoka Y, Taka H, Fujimura T, Takehana K, Yoshida M, et al: Liver autophagy contributes to the maintenance of blood glucose and amino acid levels. Autophagy. 7:727–736. 2011. View Article : Google Scholar : PubMed/NCBI | |
Christiansen MP, Linfoot PA, Neese RA and Hellerstein MK: Effect of dietary energy restriction on glucose production and substrate utilization in type 2 diabetes. Diabetes. 49:1691–1699. 2000. View Article : Google Scholar : PubMed/NCBI | |
Kishore P, Gabriely I, Cui MH, Di Vito J, Gajavelli S, Hwang JH and Shamoon H: Role of hepatic glycogen breakdown in defective counterregulation of hypoglycemia in intensively treated type 1 diabetes. Diabetes. 55:659–666. 2006. View Article : Google Scholar : PubMed/NCBI | |
Ekberg K, Landau BR, Wajngot A, Chandramouli V, Efendic S, Brunengraber H and Wahren J: Contributions by kidney and liver to glucose production in the postabsorptive state and after 60 h of fasting. Diabetes. 48:292–298. 1999. View Article : Google Scholar : PubMed/NCBI | |
Hundal RS, Krssak M, Dufour S, Laurent D, Lebon V, Chandramouli V, Inzucchi SE, Schumann WC, Petersen KF, Landau BR and Shulman GI: Mechanism by which metformin reduces glucose production in type 2 diabetes. Diabetes. 49:2063–2069. 2000. View Article : Google Scholar : PubMed/NCBI | |
Rizza RA: Pathogenesis of fasting and postprandial hyperglycemia in type 2 diabetes: Implications for therapy. Diabetes. 59:2697–2707. 2010. View Article : Google Scholar : PubMed/NCBI | |
Sharabi K, Tavares CD, Rines AK and Puigserver P: Molecular pathophysiology of hepatic glucose production. Mol Aspects Med. 46:21–33. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kehlenbrink S, Koppaka S, Martin M, Relwani R, Cui MH, Hwang JH, Li Y, Basu R, Hawkins M and Kishore P: Elevated NEFA levels impair glucose effectiveness by increasing net hepatic glycogenolysis. Diabetologia. 55:3021–3028. 2012. View Article : Google Scholar : PubMed/NCBI | |
Titchenell PM, Quinn WJ, Lu M, Chu Q, Lu W, Li C, Chen H, Monks BR, Chen J, Rabinowitz JD and Birnbaum MJ: Direct Hepatocyte insulin signaling is required for lipogenesis but is dispensable for the suppression of glucose production. Cell Metab. 23:1154–1166. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hawkins M, Gabriely I, Wozniak R, Reddy K, Rossetti L and Shamoon H: Glycemic control determines hepatic and peripheral glucose effectiveness in type 2 diabetic subjects. Diabetes. 51:2179–2189. 2002. View Article : Google Scholar : PubMed/NCBI | |
Magnusson I, Rothman DL, Katz LD, Shulman RG and Shulman GI: Increased rate of gluconeogenesis in type II diabetes mellitus. A 13C nuclear magnetic resonance study. J Clin Invest. 90:1323–1327. 1992. View Article : Google Scholar : PubMed/NCBI | |
Sharabi K, Lin H, Tavares CDJ, Dominy JE, Camporez JP, Perry RJ, Schilling R, Rines AK, Lee J, Hickey M, et al: Selective chemical inhibition of PGC-1α gluconeogenic activity ameliorates type 2 diabetes. Cell. 169:148–160.e15. 2017. View Article : Google Scholar : PubMed/NCBI | |
Perry RJ, Zhang XM, Zhang D, Kumashiro N, Camporez JP, Cline GW, Rothman DL and Shulman GI: Leptin reverses diabetes by suppression of the hypothalamic-pituitary-adrenal axis. Nat Med. 20:759–763. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lee Y, Wang MY, Du XQ, Charron MJ and Unger RH: Glucagon receptor knockout prevents insulin-deficient type 1 diabetes in mice. Diabetes. 60:391–397. 2011. View Article : Google Scholar : PubMed/NCBI | |
Petersen KF, Price TB and Bergeron R: Regulation of net hepatic glycogenolysis and gluconeogenesis during exercise: Impact of type 1 diabetes. J Clin Endocrinol Metab. 89:4656–4664. 2004. View Article : Google Scholar : PubMed/NCBI | |
Hatting M, Tavares CDJ, Sharabi K, Rines AK and Puigserver P: Insulin regulation of gluconeogenesis. Ann NY Acad Sci. 1411:21–35. 2018. View Article : Google Scholar : PubMed/NCBI | |
Madiraju AK, Erion DM, Rahimi Y, Zhang XM, Braddock DT, Albright RA, Prigaro BJ, Wood JL, Bhanot S, MacDonald MJ, et al: Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature. 510:542–546. 2014. View Article : Google Scholar : PubMed/NCBI | |
Sabet S, Condren ME, Boston AF, Doak LC and Chalmers LJ: Evolving pharmacotherapeutic strategies for type 1 diabetes mellitus. J Pediatr Pharmacol Ther. 23:351–361. 2018.PubMed/NCBI | |
Abdulrazaq NB, Cho MM, Win NN, Zaman R and Rahman MT: Beneficial effects of ginger (Zingiber officinale) on carbohydrate metabolism in streptozotocin-induced diabetic rats. Br J Nutr. 108:1194–1201. 2012. View Article : Google Scholar : PubMed/NCBI | |
Gray LR, Tompkins SC and Taylor EB: Regulation of pyruvate metabolism and human disease. Cell Mol Life Sci. 71:2577–2604. 2014. View Article : Google Scholar : PubMed/NCBI | |
Cotter DG, Ercal B, Huang X, Leid JM, d'Avignon DA, Graham MJ, Dietzen DJ, Brunt EM, Patti GJ and Crawford PA: Ketogenesis prevents diet-induced fatty liver injury and hyperglycemia. J Clin Invest. 124:5175–5190. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kumashiro N, Beddow SA, Vatner DF, Majumdar SK, Cantley JL, Guebre-Egziabher F, Fat I, Guigni B, Jurczak MJ, Birkenfeld AL, et al: Targeting pyruvate carboxylase reduces gluconeogenesis and adiposity and improves insulin resistance. Diabetes. 62:2183–2194. 2013. View Article : Google Scholar : PubMed/NCBI | |
Go Y, Jeong JY, Jeoung NH, Jeon JH, Park BY, Kang HJ, Ha CM, Choi YK, Lee SJ, Ham HJ, et al: Inhibition of pyruvate dehydrogenase kinase 2 protects against hepatic steatosis through modulation of tricarboxylic acid cycle anaplerosis and ketogenesis. Diabetes. 65:2876–2887. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chen M, Zheng H, Xu M, Zhao L, Zhang Q, Song J, Zhao Z, Lu S, Weng Q, Wu X, et al: Changes in hepatic metabolic profile during the evolution of STZ-induced diabetic rats via an 1H NMR-based metabonomic investigation. Biosci Rep. Apr 23–2019.(Epub ahead of print). doi: 10.1042/BSR20181379. | |
Sugden MC and Holness MJ: Recent advances in mechanisms regulating glucose oxidation at the level of the pyruvate dehydrogenase complex by PDKs. Am J Physiol Endocrinol Metab. 284:E855–E862. 2003. View Article : Google Scholar : PubMed/NCBI | |
Seidler NW: GAPDH and intermediary metabolism. Adv Exp Med Biol. 985:37–59. 2013. View Article : Google Scholar : PubMed/NCBI | |
Hwang NR, Yim SH, Kim YM, Jeong J, Song EJ, Lee Y, Lee JH, Choi S and Lee KJ: Oxidative modifications of glyceraldehyde-3-phosphate dehydrogenase play a key role in its multiple cellular functions. Biochem J. 423:253–264. 2009. View Article : Google Scholar : PubMed/NCBI | |
Yun J, Mullarky E, Lu C, Bosch KN, Kavalier A, Rivera K, Roper J, Chio II, Giannopoulou EG, Rago C, et al: Vitamin C selectively kills KRAS and BRAF mutant colorectal cancer cells by targeting GAPDH. Science. 350:1391–1396. 2015. View Article : Google Scholar : PubMed/NCBI | |
Giacco F and Brownlee M: Oxidative stress and diabetic complications. Circ Res. 107:1058–1070. 2010. View Article : Google Scholar : PubMed/NCBI | |
Du XL, Edelstein D, Rossetti L, Fantus IG, Goldberg H, Ziyadeh F, Wu J and Brownlee M: Hyperglycemia-induced mitochondrial superoxide overproduction activates the hexosamine pathway and induces plasminogen activator inhibitor-1 expression by increasing Sp1 glycosylation. Proc Natl Acad Sci USA. 97:12222–12226. 2000. View Article : Google Scholar : PubMed/NCBI | |
Wu J, Jin Z, Zheng H and Yan LJ: Sources and implications of NADH/NAD(+) redox imbalance in diabetes and its complications. Diabetes Metab Syndr Obes. 9:145–153. 2016.PubMed/NCBI | |
Funk SD, Yurdagul A Jr and Orr AW: Hyperglycemia and endothelial dysfunction in atherosclerosis: Lessons from type 1 diabetes. Int J Vasc Med. 2012:5696542012.PubMed/NCBI | |
Rask-Madsen C and King GL: Vascular complications of diabetes: Mechanisms of injury and protective factors. Cell Metab. 17:20–33. 2013. View Article : Google Scholar : PubMed/NCBI | |
Yan LJ: Pathogenesis of chronic hyperglycemia: From reductive stress to oxidative stress. J Diabetes Res. 2014:1379192014. View Article : Google Scholar : PubMed/NCBI | |
Brownlee M: The pathobiology of diabetic complications: A unifying mechanism. Diabetes. 54:1615–1625. 2005. View Article : Google Scholar : PubMed/NCBI | |
Ralser M, Wamelink MM, Kowald A, Gerisch B, Heeren G, Struys EA, Klipp E, Jakobs C, Breitenbach M, Lehrach H and Krobitsch S: Dynamic rerouting of the carbohydrate flux is key to counteracting oxidative stress. J Biol. 6:102007. View Article : Google Scholar : PubMed/NCBI | |
Perry RJ, Kim T, Zhang XM, Lee HY, Pesta D, Popov VB, Zhang D, Rahimi Y, Jurczak MJ, Cline GW, et al: Reversal of hypertriglyceridemia, fatty liver disease, and insulin resistance by a liver-targeted mitochondrial uncoupler. Cell Metab. 18:740–748. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wamelink MM, Struys EA and Jakobs C: The biochemistry, metabolism and inherited defects of the pentose phosphate pathway: A review. J Inherit Metab Dis. 31:703–717. 2008. View Article : Google Scholar : PubMed/NCBI | |
Riganti C, Gazzano E, Polimeni M, Aldieri E and Ghigo D: The pentose phosphate pathway: An antioxidant defense and a crossroad in tumor cell fate. Free Radic Biol Med. 53:421–436. 2012. View Article : Google Scholar : PubMed/NCBI | |
Cabezas H, Raposo RR and Meléndez-Hevia E: Activity and metabolic roles of the pentose phosphate cycle in several rat tissues. Mol Cell Biochem. 201:57–63. 1999. View Article : Google Scholar : PubMed/NCBI | |
Díaz-Flores M, Ibáñez-Hernández MA, Galván RE, Gutiérrez M, Durán-Reyes G, Medina-Navarro R, Pascoe-Lira D, Ortega-Camarillo C, Vilar-Rojas C, Cruz M and Baiza-Gutman LA: Glucose-6-phosphate dehydrogenase activity and NADPH/NADP+ ratio in liver and pancreas are dependent on the severity of hyperglycemia in rat. Life Sci. 78:2601–2607. 2006. View Article : Google Scholar : PubMed/NCBI | |
Spaans SK, Weusthuis RA, van der Oost J and Kengen SW: NADPH-generating systems in bacteria and archaea. Front Microbiol. 6:7422015. View Article : Google Scholar : PubMed/NCBI | |
Aragno M, Tamagno E, Gatto V, Brignardello E, Parola S, Danni O and Boccuzzi G: Dehydroepiandrosterone protects tissues of streptozotocin-treated rats against oxidative stress. Free Radic Biol Med. 26:1467–1474. 1999. View Article : Google Scholar : PubMed/NCBI | |
Cédola N, Cabarrou A, Auciello N, Doria I, Ponce de León H and Baylon N: The liver in human diabetes. Concentration of some induced enzymes. Acta Diabetol Lat. 12:263–271. 1975. View Article : Google Scholar : PubMed/NCBI | |
Gupte RS, Floyd BC, Kozicky M, George S, Ungvari ZI, Neito V, Wolin MS and Gupte SA: Synergistic activation of glucose-6-phosphate dehydrogenase and NAD(P)H oxidase by Src kinase elevates superoxide in type 2 diabetic, Zucker fa/fa, rat liver. Free Radic Biol Med. 47:219–228. 2009. View Article : Google Scholar : PubMed/NCBI | |
Shepherd A and Cleary MP: Metabolic alterations after dehydroepiandrosterone treatment in Zucker rats. Am J Physiol. 246:E123–E128. 1984.PubMed/NCBI | |
Dong K, Ni H, Wu M, Tang Z, Halim M and Shi D: ROS-mediated glucose metabolic reprogram induces insulin resistance in type 2 diabetes. Biochem Biophys Res Commun. 476:204–211. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kolderup A and Svihus B: Fructose metabolism and relation to atherosclerosis, type 2 diabetes, and obesity. J Nutr Metab. 2015:8230812015. View Article : Google Scholar : PubMed/NCBI | |
Lambert JE, Ramos-Roman MA, Browning JD and Parks EJ: Increased de novo lipogenesis is a distinct characteristic of individuals with nonalcoholic fatty liver disease. Gastroenterology. 146:726–735. 2014. View Article : Google Scholar : PubMed/NCBI | |
Softic S, Cohen DE and Kahn CR: Role of dietary fructose and hepatic de novo lipogenesis in fatty liver disease. Dig Dis Sci. 61:1282–1293. 2016. View Article : Google Scholar : PubMed/NCBI | |
Barros BSV, Santos DC, Pizarro MH, del Melo LGN and Gomes MB: Type 1 diabetes and non-alcoholic fatty liver disease: When should we be concerned? A nationwide study in Brazil. Nutrients. 9:E8782017. View Article : Google Scholar : PubMed/NCBI | |
Calzadilla Bertot L and Adams LA: The natural course of non-alcoholic fatty liver disease. Int J Mol Sci. 17:E7742016. View Article : Google Scholar : PubMed/NCBI | |
Targher G, Bertolini L, Padovani R, Rodella S, Zoppini G, Pichiri I, Sorgato C, Zenari L and Bonora E: Prevalence of non-alcoholic fatty liver disease and its association with cardiovascular disease in patients with type 1 diabetes. J Hepatol. 53:713–718. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kummer S, Klee D, Kircheis G, Friedt M, Schaper J, Häussinger D, Mayatepek E and Meissner T: Screening for non-alcoholic fatty liver disease in children and adolescents with type 1 diabetes mellitus: A cross-sectional analysis. Eur J Pediatr. 176:529–536. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lăpădat AM, Jianu IR, Ungureanu BS, Florescu LM, Gheonea DI, Sovaila S and Gheonea IA: Non-invasive imaging techniques in assessing non-alcoholic fatty liver disease: A current status of available methods. J Med Life. 10:19–26. 2017. View Article : Google Scholar : PubMed/NCBI | |
Guiu B, Petit JM, Loffroy R, Ben Salem D, Aho S, Masson D, Hillon P, Krause D and Cercueil JP; Quantification of liver fat content, : Comparison of triple-echo chemical shift gradient-echo imaging and in vivo proton MR spectroscopy. Radiology. 250:95–102. 2009. View Article : Google Scholar : PubMed/NCBI | |
Petit JM, Pedro L, Guiu B, Duvillard L, Bouillet B, Jooste V, Habchi M, Crevisy E, Fourmont C, Buffier P, et al: Type 1 diabetes is not associated with an increased prevalence of hepatic steatosis. Diabet Med. 32:1648–1651. 2015. View Article : Google Scholar : PubMed/NCBI | |
Perseghin G, Lattuada G, De Cobelli F, Esposito A, Costantino F, Canu T, Scifo P, De Taddeo F, Maffi P, Secchi A, et al: Reduced intrahepatic fat content is associated with increased whole-body lipid oxidation in patients with type 1 diabetes. Diabetologia. 48:2615–2621. 2005. View Article : Google Scholar : PubMed/NCBI | |
Cusi K, Sanyal AJ, Zhang S, Hartman ML, Bue-Valleskey JM, Hoogwerf BJ and Haupt A: Non-alcoholic fatty liver disease (NAFLD) prevalence and its metabolic associations in patients with type 1 diabetes and type 2 diabetes. Diabetes Obes Metab. 19:1630–1634. 2017. View Article : Google Scholar : PubMed/NCBI | |
Regnell SE, Peterson P, Trinh L, Broberg P, Leander P, Lernmark Å, Månsson S and Elding Larsson H: Magnetic resonance imaging reveals altered distribution of hepatic fat in children with type 1 diabetes compared to controls. Metabolism. 64:872–878. 2015. View Article : Google Scholar : PubMed/NCBI | |
Jiang S, Tang X, Wang K, Liang Y, Qian Y, Lu C and Cai L: Hepatic functional and pathological changes of type 1 diabetic mice in growing and maturation time. J Cell Mol Med. 23:5794–5807. 2019. View Article : Google Scholar : PubMed/NCBI | |
Torbenson M, Chen YY, Brunt E, Cummings OW, Gottfried M, Jakate S, Liu YC, Yeh MM and Ferrell L: Glycogenic hepatopathy: An underrecognized hepatic complication of diabetes mellitus. Am J Surg Pathol. 30:508–513. 2006. View Article : Google Scholar : PubMed/NCBI | |
Kotronen A, Juurinen L, Tiikkainen M, Vehkavaara S and Yki-Järvinen H: Increased liver fat, impaired insulin clearance, and hepatic and adipose tissue insulin resistance in type 2 diabetes. Gastroenterology. 135:122–130. 2008. View Article : Google Scholar : PubMed/NCBI | |
Titchenell PM, Lazar MA and Birnbaum MJ: Unraveling the regulation of hepatic metabolism by insulin. Trends Endocrinol Metab. 28:497–505. 2017. View Article : Google Scholar : PubMed/NCBI | |
Vatner DF, Majumdar SK, Kumashiro N, Petersen MC, Rahimi Y, Gattu AK, Bears M, Camporez JP, Cline GW, Jurczak MJ, et al: Insulin-independent regulation of hepatic triglyceride synthesis by fatty acids. Proc Natl Acad Sci USA. 112:1143–1148. 2015. View Article : Google Scholar : PubMed/NCBI | |
Osório J: Diabetes: Hepatic lipogenesis independent of insulin in type 2 diabetes mellitus-a paradox clarified. Nat Rev Endocrinol. 11:1302015. View Article : Google Scholar | |
Alwahsh SM, Dwyer BJ, Forbes S, Thiel DH, Lewis PJ and Ramadori G: Insulin production and resistance in different models of diet-induced obesity and metabolic syndrome. Int J Mol Sci. 18(pii): E2852017. View Article : Google Scholar : PubMed/NCBI | |
American Diabetes Association: Diagnosis and classification of diabetes mellitus. Diabetes Care. 35 (Suppl 1):S64–S71. 2012. View Article : Google Scholar : PubMed/NCBI | |
Regnell SE and Lernmark Å: Hepatic steatosis in type 1 diabetes. Rev Diabet Stud. 8:454–467. 2011. View Article : Google Scholar : PubMed/NCBI | |
Purnell JQ, Zinman B and Brunzell JD; DCCT/EDIC Research Group, : The effect of excess weight gain with intensive diabetes mellitus treatment on cardiovascular disease risk factors and atherosclerosis in type 1 diabetes mellitus: Results from the diabetes control and complications trial/epidemiology of diabetes interventions and complications study (DCCT/EDIC) study. Circulation. 127:180–187. 2013. View Article : Google Scholar : PubMed/NCBI | |
Singh R, Kaushik S, Wang Y, Xiang Y, Novak I, Komatsu M, Tanaka K, Cuervo AM and Czaja MJ: Autophagy regulates lipid metabolism. Nature. 458:1131–1135. 2009. View Article : Google Scholar : PubMed/NCBI |