1
|
Ashbaugh DG, Bigelow DB, Petty TL and
Levine BE: Acute respiratory distress in adults. Lancet. 2:319–323.
1967. View Article : Google Scholar : PubMed/NCBI
|
2
|
Villar J, Blanco J and Kacmarek RM:
Current incidence and outcome of the acute respiratory distress
syndrome. Curr Opin Crit Care. 22:1–6. 2016. View Article : Google Scholar : PubMed/NCBI
|
3
|
Erickson SE, Martin GS, Davis JL, Matthay
MA and Eisner MD; NIH NHLBI ARDS Network, : Recent trends in acute
lung injury mortality: 1996–2005. Crit Care Med. 37:1574–1579.
2009. View Article : Google Scholar : PubMed/NCBI
|
4
|
Patel BV, Wilson MR and Takata M:
Resolution of acute lung injury and inflammation: A translational
mouse model. Eur Respir J. 39:1162–1170. 2012. View Article : Google Scholar : PubMed/NCBI
|
5
|
Gill SE, Yamashita CM and Veldhuizen RA:
Lung remodeling associated with recovery from acute lung injury.
Cell Tissue Res. 367:495–509. 2017. View Article : Google Scholar : PubMed/NCBI
|
6
|
Matute-Bello G, Frevert CW and Martin TR:
Animal models of acute lung injury. Am J Physiol Lung Cell Mol
Physiol. 295:L379–L399. 2008. View Article : Google Scholar : PubMed/NCBI
|
7
|
Han S and Mallampalli RK: The acute
respiratory distress syndrome: From mechanism to translation. J
Immunol. 194:855–860. 2015. View Article : Google Scholar : PubMed/NCBI
|
8
|
Robb CT, Regan KH, Dorward DA and Rossi
AG: Key mechanisms governing resolution of lung inflammation. Semin
Immunopathol. 38:425–448. 2016. View Article : Google Scholar : PubMed/NCBI
|
9
|
Freire MO and Van Dyke TE: Natural
resolution of inflammation. Periodontol 2000. 63:149–164. 2013.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Krausgruber T, Blazek K, Smallie T,
Alzabin S, Lockstone H, Sahgal N, Hussell T, Feldmann M and Udalova
IA: IRF5 promotes inflammatory macrophage polarization and TH1-TH17
responses. Nat Immunol. 12:231–238. 2011. View Article : Google Scholar : PubMed/NCBI
|
11
|
Lien C, Fang CM, Huso D, Livak F, Lu R and
Pitha PM: Critical role of IRF-5 in regulation of B-cell
differentiation. Proc Natl Acad Sci USA. 107:4664–4668. 2010.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Krausgruber T, Saliba D, Ryzhakov G,
Lanfrancotti A, Blazek K and Udalova IA: IRF5 is required for
late-phase TNF secretion by human dendritic cells. Blood.
115:4421–4430. 2010. View Article : Google Scholar : PubMed/NCBI
|
13
|
Aggarwal NR, King LS and D'Alessio FR:
Diverse macrophage populations mediate acute lung inflammation and
resolution. Am J Physiol Lung Cell Mol Physiol. 306:L709–L725.
2014. View Article : Google Scholar : PubMed/NCBI
|
14
|
Schnyder-Candrian S, Quesniaux VF, Di
Padova F, Maillet I, Noulin N, Couillin I, Moser R, Erard F,
Vargaftig BB, Ryffel B, et al: Dual effects of p38 MAPK on
TNF-dependent bronchoconstriction and TNF-independent neutrophil
recruitment in lipopolysaccharide-induced acute respiratory
distress syndrome. J Immunol. 175:262–269. 2005. View Article : Google Scholar : PubMed/NCBI
|
15
|
Szarka RJ, Wang N, Gordon L, Nation PN and
Smith RH: A murine model of pulmonary damage induced by
lipopolysaccharide via intranasal instillation. J Immunol Methods.
202:49–57. 1997. View Article : Google Scholar : PubMed/NCBI
|
16
|
Chen H, Bai C and Wang X: The value of the
lipopolysaccharide-induced acute lung injury model in respiratory
medicine. Expert Rev Respir Med. 4:773–783. 2010. View Article : Google Scholar : PubMed/NCBI
|
17
|
van Helden HP, Kuijpers WC, Steenvoorden
D, Go C, Bruijnzeel PL, van Eijk M and Haagsman HP: Intratracheal
aerosolization of endotoxin (LPS) in the rat: A comprehensive
animal model to study adult (acute) respiratory distress syndrome.
Exp Lung Res. 23:297–316. 1997. View Article : Google Scholar : PubMed/NCBI
|
18
|
Matute-Bello G, Downey G, Moore BB,
Groshong SD, Matthay MA, Slutsky AS and Kuebler WM; Acute Lung
Injury in Animals Study Group, : An official American Thoracic
Society workshop report: Features and measurements of experimental
acute lung injury in animals. Am J Respir Cell Mol Biol.
44:725–738. 2011. View Article : Google Scholar : PubMed/NCBI
|
19
|
Mehta S: The effects of nitric oxide in
acute lung injury. Vascul Pharmacol. 43:390–403. 2005. View Article : Google Scholar : PubMed/NCBI
|
20
|
Taylor PR, Martinez-Pomares L, Stacey M,
Lin HH, Brown GD and Gordon S: Macrophage receptors and immune
recognition. Annu Rev Immunol. 23:901–944. 2005. View Article : Google Scholar : PubMed/NCBI
|
21
|
Gordon S and Mantovani A: Diversity and
plasticity of mononuclear phagocytes. Eur J Immunol. 41:2470–2472.
2011. View Article : Google Scholar : PubMed/NCBI
|
22
|
Hughes KT and Beasley MB: Pulmonary
manifestations of acute lung injury: More than just diffuse
alveolar damage. Arch Pathol Lab Med. 141:916–922. 2017. View Article : Google Scholar : PubMed/NCBI
|
23
|
Butt Y, Kurdowska A and Allen TC: Acute
Lung Injury: A Clinical and Molecular Review. Arch Pathol Lab Med.
140:345–350. 2016. View Article : Google Scholar : PubMed/NCBI
|
24
|
Elicker BM, Jones KT, Naeger DM and Frank
JA: Imaging of Acute Lung Injury. Radiol Clin North Am.
54:1119–1132. 2016. View Article : Google Scholar : PubMed/NCBI
|
25
|
Pyee Y, Chung HJ, Choi TJ, Park HJ, Hong
JY, Kim JS, Kang SS and Lee SK: Suppression of inflammatory
responses by handelin, a guaianolide dimer from Chrysanthemum
boreale, via downregulation of NF-κB signaling and pro-inflammatory
cytokine production. J Nat Prod. 77:917–924. 2014. View Article : Google Scholar : PubMed/NCBI
|
26
|
Nick JA, Young SK, Brown KK, Avdi NJ,
Arndt PG, Suratt BT, Janes MS, Henson PM and Worthen GS: Role of
p38 mitogen-activated protein kinase in a murine model of pulmonary
inflammation. J Immunol. 164:2151–2159. 2000. View Article : Google Scholar : PubMed/NCBI
|
27
|
Li C, Yang D, Cao X, Wang F, Jiang H, Guo
H, Du L, Guo Q and Yin X: LFG-500, a newly synthesized flavonoid,
attenuates lipopolysaccharide-induced acute lung injury and
inflammation in mice. Biochem Pharmacol. 113:57–69. 2016.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Eames HL, Corbin AL and Udalova IA:
Interferon regulatory factor 5 in human autoimmunity and murine
models of autoimmune disease. Transl Res. 167:167–182. 2016.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Khoyratty TE and Udalova IA: Diverse
mechanisms of IRF5 action in inflammatory responses. Int J Biochem
Cell Biol. 99:38–42. 2018. View Article : Google Scholar : PubMed/NCBI
|
30
|
Weiss M, Blazek K, Byrne AJ, Perocheau DP
and Udalova IA: IRF5 is a specific marker of inflammatory
macrophages in vivo. Mediators Inflamm. 2013:2458042013.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Cook HT, Jansen A, Lewis S, Largen P,
O'Donnell M, Reaveley D and Cattell V: Arginine metabolism in
experimental glomerulonephritis: Interaction between nitric oxide
synthase and arginase. Am J Physiol. 267:F646–F653. 1994.PubMed/NCBI
|
32
|
Li Z, Zhao ZJ, Zhu XQ, Ren QS, Nie FF, Gao
JM, Gao XJ, Yang TB, Zhou WL, Shen JL, et al: Differences in iNOS
and arginase expression and activity in the macrophages of rats are
responsible for the resistance against T. gondii infection. PLoS
One. 7:e358342012. View Article : Google Scholar : PubMed/NCBIPubMed/NCBIPubMed/NCBI
|