Primary open angle glaucoma genetics: The common variants and their clinical associations (Review)
- Authors:
- Alexandra Trivli
- Maria I. Zervou
- George N. Goulielmos
- Demetrios A. Spandidos
- Efstathios T. Detorakis
-
Affiliations: Section of Molecular Pathology and Human Genetics, Department of Internal Medicine, School of Medicine, 71003 Heraklion, Greece, Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece, Department of Ophthalmology, University Hospital of Heraklion, 71110 Heraklion, Greece - Published online on: June 9, 2020 https://doi.org/10.3892/mmr.2020.11215
- Pages: 1103-1110
This article is mentioned in:
Abstract
Tham YC, Li X, Wong TY, Quigley HA, Aung T and Cheng CY: Global prevalence of glaucoma and projections of glaucoma burden through 2040: A systematic review and meta-analysis. Ophthalmology. 121:2081–2090. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kwon YH, Fingert JH, Kuehn MH and Alward WL: Primary open-angle glaucoma. N Engl J Med. 360:1113–1124. 2009. View Article : Google Scholar : PubMed/NCBI | |
Gordon MO, Beiser JA, Brandt JD, Heuer DK, Higginbotham EJ, Johnson CA, Keltner JL, Miller JP, Parrish RK II, Wilson MR, et al: The Ocular Hypertension Treatment Study: Baseline factors that predict the onset of primary open-angle glaucoma. Arch Ophthalmol. 120:714–720, discussion 829–830. 2002. View Article : Google Scholar : PubMed/NCBI | |
Fan BJ, Leung YF, Wang N, Lam SC, Liu Y, Tam OS and Pang CP: Genetic and environmental risk factors for primary open-angle glaucoma. Chin Med J (Engl). 117:706–710. 2004.PubMed/NCBI | |
Wolfs RC, Klaver CC, Ramrattan RS, van Duijn CM, Hofman A and de Jong PT: Genetic risk of primary open-angle glaucoma. Population-based familial aggregation study. Arch Ophthalmol. 116:1640–1645. 1998. View Article : Google Scholar : PubMed/NCBI | |
Stone EM, Fingert JH, Alward WL, Nguyen TD, Polansky JR, Sunden SL, Nishimura D, Clark AF, Nystuen A, Nichols BE, et al: Identification of a gene that causes primary open angle glaucoma. Science. 275:668–670. 1997. View Article : Google Scholar : PubMed/NCBI | |
Rezaie T, Child A, Hitchings R, Brice G, Miller L, Coca-Prados M, Héon E, Krupin T, Ritch R, Kreutzer D, et al: Adult-onset primary open-angle glaucoma caused by mutations in optineurin. Science. 295:1077–1079. 2002. View Article : Google Scholar : PubMed/NCBI | |
Monemi S, Spaeth G, DaSilva A, Popinchalk S, Ilitchev E, Liebmann J, Ritch R, Héon E, Crick RP, Child A, et al: Identification of a novel adult-onset primary open-angle glaucoma (POAG) gene on 5q22.1. Hum Mol Genet. 14:725–733. 2005. View Article : Google Scholar : PubMed/NCBI | |
Pasutto F, Matsumoto T, Mardin CY, Sticht H, Brandstätter JH, Michels-Rautenstrauss K, Weisschuh N, Gramer E, Ramdas WD, van Koolwijk LM, et al: Heterozygous NTF4 mutations impairing neurotrophin-4 signaling in patients with primary open-angle glaucoma. Am J Hum Genet. 85:447–456. 2009. View Article : Google Scholar : PubMed/NCBI | |
Fingert JH: Primary open-angle glaucoma genes. Eye (Lond). 25:587–595. 2011. View Article : Google Scholar : PubMed/NCBI | |
Charlesworth J, Kramer PL, Dyer T, Diego V, Samples JR, Craig JE, Mackey DA, Hewitt AW, Blangero J and Wirtz MK: The path to open-angle glaucoma gene discovery: Endophenotypic status of intraocular pressure, cup-to-disc ratio, and central corneal thickness. Invest Ophthalmol Vis Sci. 51:3509–3514. 2010. View Article : Google Scholar : PubMed/NCBI | |
Klein BE, Klein R and Lee KE: Heritability of risk factors for primary open-angle glaucoma: The Beaver Dam Eye Study. Invest Ophthalmol Vis Sci. 45:59–62. 2004. View Article : Google Scholar : PubMed/NCBI | |
Sanfilippo PG, Hewitt AW, Hammond CJ and Mackey DA: The heritability of ocular traits. Surv Ophthalmol. 55:561–583. 2010. View Article : Google Scholar : PubMed/NCBI | |
Liu Y and Allingham RR: Major review: Molecular genetics of primary open-angle glaucoma. Exp Eye Res. 160:62–84. 2017. View Article : Google Scholar : PubMed/NCBI | |
Liu Y and Allingham RR: Molecular genetics in glaucoma. Exp Eye Res. 93:331–339. 2011. View Article : Google Scholar : PubMed/NCBI | |
Sheffield VC, Stone EM, Alward WL, Drack AV, Johnson AT, Streb LM and Nichols BE: Genetic linkage of familial open angle glaucoma to chromosome 1q21-q31. Nat Genet. 4:47–50. 1993. View Article : Google Scholar : PubMed/NCBI | |
Fingert JH, Héon E, Liebmann JM, Yamamoto T, Craig JE, Rait J, Kawase K, Hoh ST, Buys YM, Dickinson J, et al: Analysis of myocilin mutations in 1703 glaucoma patients from five different populations. Hum Mol Genet. 8:899–905. 1999. View Article : Google Scholar : PubMed/NCBI | |
Kaur K, Reddy AB, Mukhopadhyay A, Mandal AK, Hasnain SE, Ray K, Thomas R, Balasubramanian D and Chakrabarti S: Myocilin gene implicated in primary congenital glaucoma. Clin Genet. 67:335–340. 2005. View Article : Google Scholar : PubMed/NCBI | |
Dismuke WM, Challa P, Navarro I, Stamer WD and Liu Y: Human aqueous humor exosomes. Exp Eye Res. 132:73–77. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kaur K, Mandal AK and Chakrabarti S: Primary congenital glaucoma and the involvement of CYP1B1. Middle East Afr J Ophthalmol. 18:7–16. 2011. View Article : Google Scholar : PubMed/NCBI | |
Aung T, Rezaie T, Okada K, Viswanathan AC, Child AH, Brice G, Bhattacharya SS, Lehmann OJ, Sarfarazi M and Hitchings RA: Clinical features and course of patients with glaucoma with the E50K mutation in the optineurin gene. Invest Ophthalmol Vis Sci. 46:2816–2822. 2005. View Article : Google Scholar : PubMed/NCBI | |
Cirulli ET, Lasseigne BN, Petrovski S, Sapp PC, Dion PA, Leblond CS, Couthouis J, Lu YF, Wang Q, Krueger BJ, et al FALS Sequencing Consortium, : Exome sequencing in amyotrophic lateral sclerosis identifies risk genes and pathways. Science. 347:1436–1441. 2015. View Article : Google Scholar : PubMed/NCBI | |
Heo JM, Ordureau A, Paulo JA, Rinehart J and Harper JW: The PINK1-PARKIN mitochondrial ubiquitylation pathway drives a program of OPTN/NDP52 recruitment and TBK1 activation to promote mitophagy. Mol Cell. 60:7–20. 2015. View Article : Google Scholar : PubMed/NCBI | |
Slowicka K, Vereecke L and van Loo G: Cellular functions of optineurin in health and disease. Trends Immunol. 37:621–633. 2016. View Article : Google Scholar : PubMed/NCBI | |
Park BC, Tibudan M, Samaraweera M, Shen X and Yue BYJT: Interaction between two glaucoma genes, optineurin and myocilin. Genes Cells. 12:969–979. 2007. View Article : Google Scholar : PubMed/NCBI | |
Morton S, Hesson L, Peggie M and Cohen P: Enhanced binding of TBK1 by an optineurin mutant that causes a familial form of primary open angle glaucoma. FEBS Lett. 582:997–1002. 2008. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Garrett ME, Yaspan BL, Bailey JC, Loomis SJ, Brilliant M, Budenz DL, Christen WG, Fingert JH, Gaasterland D, et al: DNA copy number variants of known glaucoma genes in relation to primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 55:8251–8258. 2014b. View Article : Google Scholar | |
Gijselinck I, Van Mossevelde S, van der Zee J, Sieben A, Philtjens S, Heeman B, Engelborghs S, Vandenbulcke M, De Baets G, Bäumer V, et al BELNEU Consortium, : Loss of TBK1 is a frequent cause of frontotemporal dementia in a Belgian cohort. Neurology. 85:2116–2125. 2015. View Article : Google Scholar : PubMed/NCBI | |
Matsumoto G, Shimogori T, Hattori N and Nukina N: TBK1 controls autophagosomal engulfment of polyubiquitinated mitochondria through p62/SQSTM1 phosphorylation. Hum Mol Genet. 24:4429–4442. 2015. View Article : Google Scholar : PubMed/NCBI | |
Janssen SF, Gorgels TG, Ramdas WD, Klaver CC, van Duijn CM, Jansonius NM and Bergen AA: The vast complexity of primary open angle glaucoma: Disease genes, risks, molecular mechanisms and pathobiology. Prog Retin Eye Res. 37:31–67. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kramer PL, Samples JR, Monemi S, Sykes R, Sarfarazi M and Wirtz MK: The role of the WDR36 gene on chromosome 5q22.1 in a large family with primary open-angle glaucoma mapped to this region. Arch Ophthalmol. 124:1328–1331. 2006. View Article : Google Scholar : PubMed/NCBI | |
Gallenberger M, Meinel DM, Kroeber M, Wegner M, Milkereit P, Bösl MR and Tamm ER: Lack of WDR36 leads to preimplantation embryonic lethality in mice and delays the formation of small subunit ribosomal RNA in human cells in vitro. Hum Mol Genet. 20:422–435. 2011. View Article : Google Scholar : PubMed/NCBI | |
Murakami K, Meguro A, Ota M, Shiota T, Nomura N, Kashiwagi K, Mabuchi F, Iijima H, Kawase K, Yamamoto T, et al: Analysis of microsatellite polymorphisms within the GLC1F locus in Japanese patients with normal tension glaucoma. Mol Vis. 16:462–466. 2010.PubMed/NCBI | |
Pasutto F, Keller KE, Weisschuh N, Sticht H, Samples JR, Yang YF, Zenkel M, Schlötzer-Schrehardt U, Mardin CY, Frezzotti P, et al: Variants in ASB10 are associated with open-angle glaucoma. Hum Mol Genet. 21:1336–1349. 2012. View Article : Google Scholar : PubMed/NCBI | |
Macgregor S, Hewitt AW, Hysi PG, Ruddle JB, Medland SE, Henders AK, Gordon SD, Andrew T, McEvoy B, Sanfilippo PG, et al: Genome-wide association identifies ATOH7 as a major gene determining human optic disc size. Hum Mol Genet. 19:2716–2724. 2010. View Article : Google Scholar : PubMed/NCBI | |
Venturini C, Nag A, Hysi PG, Wang JJ, Wong TY, Healey PR, Mitchell P, Hammond CJ and Viswanathan AC; Wellcome Trust Case Control Consortium 2 and BMES GWAS Group, : Clarifying the role of ATOH7 in glaucoma endophenotypes. Br J Ophthalmol. 98:562–566. 2014. View Article : Google Scholar : PubMed/NCBI | |
Gu X, Reagan AM, McClellan ME and Elliott MH: Caveolins and caveolae in ocular physiology and pathophysiology. Prog Retin Eye Res. 56:84–106. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chen F, Klein AP, Klein BE, Lee KE, Truitt B, Klein R, Iyengar SK and Duggal P: Exome array analysis identifies CAV1/CAV2 as a susceptibility locus for intraocular pressure. Invest Ophthalmol Vis Sci. 56:544–551. 2014. View Article : Google Scholar : PubMed/NCBI | |
Aga M, Bradley JM, Wanchu R, Yang YF, Acott TS and Keller KE: Differential effects of caveolin-1 and −2 knockdown on aqueous outflow and altered extracellular matrix turnover in caveolin-silenced trabecular meshwork cells. Invest Ophthalmol Vis Sci. 55:5497–5509. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kuo CY, Lin YC, Yang JJ and Yang VC: Interaction abolishment between mutant caveolin-1(Δ62-100) and ABCA1 reduces HDL-mediated cellular cholesterol efflux. Biochem Biophys Res Commun. 414:337–343. 2011. View Article : Google Scholar : PubMed/NCBI | |
Bailey JN, Loomis SJ, Kang JH, Allingham RR, Gharahkhani P, Khor CC, Burdon KP, Aschard H, Chasman DI, Igo RP Jr, et al ANZRAG Consortium, : Genome-wide association analysis identifies TXNRD2, ATXN2 and FOXC1 as susceptibility loci for primary open-angle glaucoma. Nat Genet. 48:189–194. 2016. View Article : Google Scholar : PubMed/NCBI | |
Burdon KP, Crawford A, Casson RJ, Hewitt AW, Landers J, Danoy P, Mackey DA, Mitchell P, Healey PR and Craig JE: Glaucoma risk alleles at CDKN2B-AS1 are associated with lower intraocular pressure, normal-tension glaucoma, and advanced glaucoma. Ophthalmology. 119:1539–1545. 2012. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Hughes G, Chen X, Qian S, Cao W, Wang L, Wang M and Sun X: Genetic variants associated with different risks for high tension glaucoma and normal tension glaucoma in a Chinese population. Invest Ophthalmol Vis Sci. 56:2595–2600. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wiggs JL, Yaspan BL, Hauser MA, Kang JH, Allingham RR, Olson LM, Abdrabou W, Fan BJ, Wang DY, Brodeur W, et al: Common variants at 9p21 and 8q22 are associated with increased susceptibility to optic nerve degeneration in glaucoma. PLoS Genet. 8:e10026542012. View Article : Google Scholar : PubMed/NCBI | |
Kathiresan S, Voight BF, Purcell S, Musunuru K, Ardissino D, Mannucci PM, Anand S, Engert JC, Samani NJ, Schunkert H, et al Wellcome Trust Case Control Consortium, : Genome-wide association of early-onset myocardial infarction with single nucleotide polymorphisms and copy number variants. Nat Genet. 41:334–341. 2009. View Article : Google Scholar : PubMed/NCBI | |
Burdon KP, Macgregor S, Hewitt AW, Sharma S, Chidlow G, Mills RA, Danoy P, Casson R, Viswanathan AC, Liu JZ, et al: Genome-wide association study identifies susceptibility loci for open angle glaucoma at TMCO1 and CDKN2B-AS1. Nat Genet. 43:574–578. 2011. View Article : Google Scholar : PubMed/NCBI | |
Shiga Y, Nishiguchi KM, Kawai Y, Kojima K, Sato K, Fujita K, Takahashi M, Omodaka K, Araie M, Kashiwagi K, et al: Genetic analysis of Japanese primary open-angle glaucoma patients and clinical characterization of risk alleles near CDKN2B-AS1, SIX6 and GAS7. PLoS One. 12:e01866782017. View Article : Google Scholar : PubMed/NCBI | |
Carnes MU, Liu YP, Allingham RR, Whigham BT, Havens S, Garrett ME, Qiao C, Katsanis N, Wiggs JL, Pasquale LR, et al NEIGHBORHOOD Consortium Investigators, : Discovery and functional annotation of SIX6 variants in primary open-angle glaucoma. PLoS Genet. 10:e10043722014. View Article : Google Scholar : PubMed/NCBI | |
Iglesias AI, Springelkamp H, van der Linde H, Severijnen LA, Amin N, Oostra B, Kockx CE, van den Hout MC, van Ijcken WF, Hofman A, et al: Exome sequencing and functional analyses suggest that SIX6 is a gene involved in an altered proliferation-differentiation balance early in life and optic nerve degeneration at old age. Hum Mol Genet. 23:1320–1332. 2014. View Article : Google Scholar : PubMed/NCBI | |
Burdon KP, Mitchell P, Lee A, Healey PR, White AJ, Rochtchina E, Thomas PB, Wang JJ and Craig JE: Association of open-angle glaucoma loci with incident glaucoma in the Blue Mountains Eye study. Am J Ophthalmol. 159:31–36.e1. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kuo JZ, Zangwill LM, Medeiros FA, Liebmann JM, Girkin CA, Hammel N, Rotter JI and Weinreb RN: Quantitative trait locus analysis of SIX1-SIX6 with retinal nerve fiber layer thickness in individuals of European descent. Am J Ophthalmol. 160:123–130.e1. 2015. View Article : Google Scholar : PubMed/NCBI | |
Skowronska-Krawczyk D, Zhao L, Zhu J, Weinreb RN, Cao G, Luo J, Flagg K, Patel S, Wen C, Krupa M, et al: P16INK4a Upregulation mediated by SIX6 defines retinal ganglion cell pathogenesis in glaucoma. Mol Cell. 59:931–940. 2015. View Article : Google Scholar : PubMed/NCBI | |
Scheetz TE, Faga B, Ortega L, Roos BR, Gordon MO, Kass MA, Wang K and Fingert JH: Glaucoma risk alleles in the ocular hypertension treatment study. Ophthalmology. 123:2527–2536. 2016. View Article : Google Scholar : PubMed/NCBI | |
van Koolwijk LM, Ramdas WD, Ikram MK, Jansonius NM, Pasutto F, Hysi PG, Macgregor S, Janssen SF, Hewitt AW, Viswanathan AC, et al DCCT/EDIC Research Group; Wellcome Trust Case Control Consortium 2, : Common genetic determinants of intraocular pressure and primary open-angle glaucoma. PLoS Genet. 8:e10026112012. View Article : Google Scholar : PubMed/NCBI | |
Hysi PG, Cheng CY, Springelkamp H, Macgregor S, Bailey JNC, Wojciechowski R, Vitart V, Nag A, Hewitt AW, Höhn R, et al BMES GWAS Group; NEIGHBORHOOD Consortium; Wellcome Trust Case Control Consortium 2, : Genome-wide analysis of multi-ancestry cohorts identifies new loci influencing intraocular pressure and susceptibility to glaucoma. Nat Genet. 46:1126–1130. 2014. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Lin Y, Vithana EN, Jia L, Zuo X, Wong TY, Chen LJ, Zhu X, Tam PO, Gong B, et al: Common variants near ABCA1 and in PMM2 are associated with primary open-angle glaucoma. Nat Genet. 46:1115–1119. 2014. View Article : Google Scholar : PubMed/NCBI | |
Gharahkhani P, Burdon KP, Fogarty R, Sharma S, Hewitt AW, Martin S, Law MH, Cremin K, Bailey JNC, Loomis SJ, et al Wellcome Trust Case Control Consortium 2, NEIGHBORHOOD consortium, : Common variants near ABCA1, AFAP1 and GMDS confer risk of primary open-angle glaucoma. Nat Genet. 46:1120–1125. 2014. View Article : Google Scholar : PubMed/NCBI | |
Springelkamp H, Iglesias AI, Cuellar-Partida G, Amin N, Burdon KP, van Leeuwen EM, Gharahkhani P, Mishra A, van der Lee SJ, Hewitt AW, et al: ARHGEF12 influences the risk of glaucoma by increasing intraocular pressure. Hum Mol Genet. 24:2689–2699. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lessey-Morillon EC, Osborne LD, Monaghan-Benson E, Guilluy C, O'Brien ET, Superfine R and Burridge K: The RhoA guanine nucleotide exchange factor, LARG, mediates ICAM-1-dependent mechanotransduction in endothelial cells to stimulate transendothelial migration. J Immunol. 192:3390–3398. 2014. View Article : Google Scholar : PubMed/NCBI | |
Okuhira K, Fitzgerald ML, Tamehiro N, Ohoka N, Suzuki K, Sawada J, Naito M and Nishimaki-Mogami T: Binding of PDZ-RhoGEF to ATP-binding cassette transporter A1 (ABCA1) induces cholesterol efflux through RhoA activation and prevention of transporter degradation. J Biol Chem. 285:16369–16377. 2010. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Cai J and Jones DP: Mitochondrial thioredoxin in regulation of oxidant-induced cell death. FEBS Lett. 580:6596–6602. 2006. View Article : Google Scholar : PubMed/NCBI | |
Caprioli J, Munemasa Y, Kwong JM and Piri N: Overexpression of thioredoxins 1 and 2 increases retinal ganglion cell survival after pharmacologically induced oxidative stress, optic nerve transection, and in experimental glaucoma. Trans Am Ophthalmol Soc. 107:161–165. 2009.PubMed/NCBI | |
Orr HT: Cell biology of spinocerebellar ataxia. J Cell Biol. 197:167–177. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lattante S, Millecamps S, Stevanin G, Rivaud-Péchoux S, Moigneu C, Camuzat A, Da Barroca S, Mundwiller E, Couarch P, Salachas F, et al French Research Network on FTD and FTD-ALS, : Contribution of ATXN2 intermediary polyQ expansions in a spectrum of neurodegenerative disorders. Neurology. 83:990–995. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ju YT, Chang ACY, She BR, Tsaur ML, Hwang HM, Chao CCK, Cohen SN and Lin-Chao S: gas7: A gene expressed preferentially in growth-arrested fibroblasts and terminally differentiated Purkinje neurons affects neurite formation. Proc Natl Acad Sci USA. 95:11423–11428. 1998. View Article : Google Scholar : PubMed/NCBI | |
Wenger DA, Rafi MA, Luzi P, Datto J and Costantino-Ceccarini E: Krabbe disease: Genetic aspects and progress toward therapy. Mol Genet Metab. 70:1–9. 2000. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Gibson J, Wheeler J, Kwee LC, Santiago-Turla CM, Akafo SK, Lichter PR, Gaasterland DE, Moroi SE, Challa P, et al: GALC deletions increase the risk of primary open-angle glaucoma: The role of Mendelian variants in complex disease. PLoS One. 6:e271342011. View Article : Google Scholar : PubMed/NCBI | |
Williams SE, Carmichael TR, Allingham RR, Hauser M and Ramsay M: The genetics of POAG in black South Africans: A candidate gene association study. Sci Rep. 5:83782015. View Article : Google Scholar : PubMed/NCBI | |
Vishal M, Sharma A, Kaurani L, Alfano G, Mookherjee S, Narta K, Agrawal J, Bhattacharya I, Roychoudhury S, Ray J, et al: Genetic association and stress mediated down-regulation in trabecular meshwork implicates MPP7 as a novel candidate gene in primary open angle glaucoma. BMC Med Genomics. 9:152016. View Article : Google Scholar : PubMed/NCBI | |
Acharya M, Mookherjee S, Bhattacharjee A, Thakur SK, Bandyopadhyay AK, Sen A, Chakrabarti S and Ray K: Evaluation of the OPTC gene in primary open angle glaucoma: functional significance of a silent change. BMC Mol Biol. 8:212007. View Article : Google Scholar : PubMed/NCBI | |
Lu Y, Vitart V, Burdon KP, Khor CC, Bykhovskaya Y, Mirshahi A, Hewitt AW, Koehn D, Hysi PG, Ramdas WD, et al NEIGHBOR Consortium, : Genome-wide association analyses identify multiple loci associated with central corneal thickness and keratoconus. Nat Genet. 45:155–163. 2013. View Article : Google Scholar : PubMed/NCBI | |
Chua J, Tham YC, Liao J, Zheng Y, Aung T, Wong TY and Cheng CY: Ethnic differences of intraocular pressure and central corneal thickness: The Singapore Epidemiology of Eye Diseases study. Ophthalmology. 121:2013–2022. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ramdas WD, van Koolwijk LME, Ikram MK, Jansonius NM, de Jong PTVM, Bergen AAB, Isaacs A, Amin N, Aulchenko YS, Wolfs RC, et al: A genome-wide association study of optic disc parameters. PLoS Genet. 6:e10009782010. View Article : Google Scholar : PubMed/NCBI | |
Springelkamp H, Höhn R, Mishra A, Hysi PG, Khor CC, Loomis SJ, Bailey JN, Gibson J, Thorleifsson G, Janssen SF, et al Blue Mountains Eye Study-GWAS group; NEIGHBORHOOD Consortium; Wellcome Trust Case Control Consortium 2 (WTCCC2), : Meta-analysis of genome-wide association studies identifies novel loci that influence cupping and the glaucomatous process. Nat Commun. 5:48832014. View Article : Google Scholar : PubMed/NCBI | |
Springelkamp H, Iglesias AI, Mishra A, Höhn R, Wojciechowski R, Khawaja AP, Nag A, Wang YX, Wang JJ, Cuellar-Partida G, et al NEIGHBORHOOD Consortium, : New insights into the genetics of primary open-angle glaucoma based on meta-analyses of intraocular pressure and optic disc characteristics. Hum Mol Genet. 26:438–453. 2017.PubMed/NCBI | |
Axenovich T, Zorkoltseva I, Belonogova N, van Koolwijk LM, Borodin P, Kirichenko A, Babenko V, Ramdas WD, Amin N, Despriet DD, et al: Linkage and association analyses of glaucoma related traits in a large pedigree from a Dutch genetically isolated population. J Med Genet. 48:802–809. 2011. View Article : Google Scholar : PubMed/NCBI | |
Khawaja AP and Viswanathan AC: Are we ready for genetic testing for primary open-angle glaucoma? Eye (Lond). 32:877–883. 2018. View Article : Google Scholar : PubMed/NCBI |