1
|
Colloca L, Ludman T, Bouhassira D, Baron
R, Dickenson AH, Yarnitsky D, Freeman R, Truini A, Attal N,
Finnerup NB, et al: Neuropathic pain. Nat Rev Dis Primers.
3:170022017. View Article : Google Scholar : PubMed/NCBI
|
2
|
van Hecke O, Austin SK, Khan RA, Smith BH
and Torrance N: Neuropathic pain in the general population: A
systematic review of epidemiological studies. Pain. 155:654–662.
2014. View Article : Google Scholar : PubMed/NCBI
|
3
|
Cohen SP and Mao J: Neuropathic pain:
Mechanisms and their clinical implications. BMJ. 348:f76562014.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Nakamura Y, Reva M and DiGregorio DA:
Variations in Ca2+ Influx Can Alter Chelator-Based
Estimates of Ca2+ Channel-Synaptic Vesicle Coupling
Distance. J Neurosci. 38:3971–3987. 2018. View Article : Google Scholar : PubMed/NCBI
|
5
|
Li B, Tadross MR and Tsien RW: Sequential
ionic and conformational signaling by calcium channels drives
neuronal gene expression. Science. 351:863–867. 2016. View Article : Google Scholar : PubMed/NCBI
|
6
|
Bazargani N and Attwell D: Astrocyte
calcium signaling: The third wave. Nat Neurosci. 19:182–189. 2016.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Castro J, Harrington AM, Garcia-Caraballo
S, Maddern J, Grundy L, Zhang J, Page G, Miller PE, Craik DJ, Adams
DJ, et al: α-Conotoxin Vc1.1 inhibits human dorsal root ganglion
neuroexcitability and mouse colonic nociception via GABAB
receptors. Gut. 66:1083–1094. 2017. View Article : Google Scholar : PubMed/NCBI
|
8
|
Iftinca MC and Zamponi GW: Regulation of
neuronal T-type calcium channels. Trends Pharmacol Sci. 30:32–40.
2009. View Article : Google Scholar : PubMed/NCBI
|
9
|
Waxman SG and Zamponi GW: Regulating
excitability of peripheral afferents: Emerging ion channel targets.
Nat Neurosci. 17:153–163. 2014. View
Article : Google Scholar : PubMed/NCBI
|
10
|
Minami A, Xia YF and Zucker RS: Increased
Ca2+ influx through Na+/Ca2+
exchanger during long-term facilitation at crayfish neuromuscular
junctions. J Physiol. 585:413–427. 2007. View Article : Google Scholar : PubMed/NCBI
|
11
|
Lytton J: Na+/Ca2+
exchangers: Three mammalian gene families control Ca2+
transport. Biochem J. 406:365–382. 2007. View Article : Google Scholar : PubMed/NCBI
|
12
|
Jalloul AH, Szerencsei RT and Schnetkamp
PP: Cation dependencies and turnover rates of the human
K+-dependent Na+-Ca2+ exchangers
NCKX1, NCKX2, NCKX3 and NCKX4. Cell Calcium. 59:1–11. 2016.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Li XF, Kiedrowski L, Tremblay F, Fernandez
FR, Perizzolo M, Winkfein RJ, Turner RW, Bains JS, Rancourt DE and
Lytton J: Importance of K+-dependent
Na+/Ca2+-exchanger 2, NCKX2, in motor
learning and memory. J Biol Chem. 281:6273–6282. 2006. View Article : Google Scholar : PubMed/NCBI
|
14
|
Yan XT, Ji LJ, Wang Z, Wu X, Wang Q, Sun
S, Lu JM and Zhang Y: MicroRNA-93 alleviates neuropathic pain
through targeting signal transducer and activator of transcription
3. Int Immunopharmacol. 46:156–162. 2017. View Article : Google Scholar : PubMed/NCBI
|
15
|
Cuomo O, Pignataro G, Gala R, Boscia F,
Tortiglione A, Molinaro P, Di Renzo G, Lytton J and Annunziato L:
Involvement of the potassium-dependent sodium/calcium exchanger
gene product NCKX2 in the brain insult induced by permanent focal
cerebral ischemia. Ann N Y Acad Sci. 1099:486–489. 2007. View Article : Google Scholar : PubMed/NCBI
|
16
|
Cuomo O, Gala R, Pignataro G, Boscia F,
Secondo A, Scorziello A, Pannaccione A, Viggiano D, Adornetto A,
Molinaro P, et al: A critical role for the potassium-dependent
sodium-calcium exchanger NCKX2 in protection against focal ischemic
brain damage. J Neurosci. 28:2053–2063. 2008. View Article : Google Scholar : PubMed/NCBI
|
17
|
Yan T, Zhang F, Sun C, Sun J, Wang Y, Xu
X, Shi J and Shi G: miR-32-5p-mediated Dusp5 downregulation
contributes to neuropathic pain. Biochem Biophys Res Commun.
495:506–511. 2018. View Article : Google Scholar : PubMed/NCBI
|
18
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−∆ ∆ C(T)) Method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI
|
19
|
Sama DM and Norris CM: Calcium
dysregulation and neuroinflammation: Discrete and integrated
mechanisms for age-related synaptic dysfunction. Ageing Res Rev.
12:982–995. 2013. View Article : Google Scholar : PubMed/NCBI
|
20
|
Schnetkamp PP, Jalloul AH, Liu G and
Szerencsei RT: The SLC24 family of K+-dependent
Na+-Ca2+ exchangers: Structure-function
relationships. Curr Top Membr. 73:263–287. 2014. View Article : Google Scholar : PubMed/NCBI
|
21
|
Jalloul AH, Szerencsei RT, Rogasevskaia TP
and Schnetkamp PPM: Structure-function relationships of
K+-dependent Na+/Ca2+ exchangers
(NCKX). Cell Calcium. 86:1021532020. View Article : Google Scholar : PubMed/NCBI
|
22
|
Huang Y, Wen LL, Xie JD, Ouyang HD, Chen
DT and Zeng WA: Antinociceptive effectiveness of the inhibition of
NCX reverse-mode action in rodent neuropathic pain model. Mol Pain.
15:17448069198645112019. View Article : Google Scholar : PubMed/NCBI
|
23
|
Wang L, Yin C, Liu T, Abdul M, Zhou Y, Cao
JL and Lu C: Pellino1 regulates neuropathic pain as well as
microglial activation through the regulation of MAPK/NF-κB
signaling in the spinal cord. J Neuroinflammation. 17:832020.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Mannironi C, Biundo A, Rajendran S, De
Vito F, Saba L, Caioli S, Zona C, Ciotti T, Caristi S, Perlas E, et
al: miR-135a Regulates Synaptic Transmission and Anxiety-Like
Behavior in Amygdala. Mol Neurobiol. 55:3301–3315. 2018. View Article : Google Scholar : PubMed/NCBI
|
25
|
Gomez Zubieta DM, Hamood MA, Beydoun R,
Pall AE and Kondapalli KC: MicroRNA-135a regulates NHE9 to inhibit
proliferation and migration of glioblastoma cells. Cell Commun
Signal. 15:552017. View Article : Google Scholar : PubMed/NCBI
|
26
|
Nagaraj S, Zoltowska KM, Laskowska-Kaszub
K and Wojda U: microRNA diagnostic panel for Alzheimer's disease
and epigenetic trade-off between neurodegeneration and cancer.
Ageing Res Rev. 49:125–143. 2019. View Article : Google Scholar : PubMed/NCBI
|
27
|
Liu Y, Liao S, Quan H, Lin Y, Li J and
Yang Q: Involvement of microRNA-135a-5p in the Protective Effects
of Hydrogen Sulfide Against Parkinson's Disease. Cell Physiol
Biochem. 40:18–26. 2016. View Article : Google Scholar : PubMed/NCBI
|
28
|
Liu X, Li M, Hou M, Huang W and Song J:
MicroRNA-135a alleviates oxygen-glucose deprivation and
reoxygenation-induced injury in neurons through regulation of
GSK-3β/Nrf2 signaling. J Biochem Mol Toxicol. 32:e221592018.
View Article : Google Scholar
|
29
|
Vangoor VR, Reschke CR, Senthilkumar K,
van de Haar LL, de Wit M, Giuliani G, Broekhoven MH, Morris G,
Engel T, Brennan GP, et al: Antagonizing Increased miR-135aLevels
at the Chronic Stage of Experimental TLE Reduces Spontaneous
Recurrent Seizures. J Neurosci. 39:5064–5079. 2019. View Article : Google Scholar : PubMed/NCBI
|
30
|
Linnstaedt SD, Walker MG, Parker JS, Yeh
E, Sons RL, Zimny E, Lewandowski C, Hendry PL, Damiron K, Pearson
C, et al: MicroRNA circulating in the early aftermath of motor
vehicle collision predict persistent pain development and suggest a
role for microRNA in sex-specific pain differences. Mol Pain.
11:662015. View Article : Google Scholar : PubMed/NCBI
|