1
|
Weiss HR and Moramarco M: Congenital
scoliosis (Mini-review). Curr Pediatr Rev. 12:43–47. 2016.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Wu N, Ming X, Xiao J, Wu Z, Chen X,
Shinawi M, Shen Y, Yu G, Liu J, Xie H, et al: TBX6 null variants
and a common hypomorphic allele in congenital scoliosis. N Engl J
Med. 372:341–350. 2015. View Article : Google Scholar : PubMed/NCBI
|
3
|
de Baat P, van Biezen FC and de Baat C:
Scoliosis: Review of types, aetiology, diagnostics, and treatment
2. Ned Tijdschr Tandheelkd. 119:531–553. 2012.(In Dutch).
View Article : Google Scholar : PubMed/NCBI
|
4
|
McMaster MJ and Ohtsuka K: The natural
history of congenital scoliosis. A study of two hundred and
fifty-one patients. J Bone Joint Surg Am. 64:1128–1147. 1982.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Shands AR Jr and Bundens WD: Congenital
deformities of the spine; an analysis of the roentgenograms of 700
children. Bull Hosp Joint Dis. 17:110–133. 1956.PubMed/NCBI
|
6
|
Bouman A, Waisfisz Q, Admiraal J, van de
Loo M, van Rijn RR, Micha D, Oostra RJ and Mathijssen IB:
Homozygous DMRT2 variant associates with severe rib malformations
in a newborn. Am J Med Genet A. 176:1216–1221. 2018. View Article : Google Scholar : PubMed/NCBI
|
7
|
Li Z, Yu X and Shen J: Environmental
aspects of congenital scoliosis. Environ Sci Pollut Res Int.
22:5751–5755. 2015. View Article : Google Scholar : PubMed/NCBI
|
8
|
Chapman G, Sparrow DB, Kremmer E and
Dunwoodie SL: Notch inhibition by the ligand DELTA-LIKE 3 defines
the mechanism of abnormal vertebral segmentation in spondylocostal
dysostosis. Hum Mol Genet. 20:905–916. 2011. View Article : Google Scholar : PubMed/NCBI
|
9
|
Giampietro PF, Raggio CL, Reynolds C,
Ghebranious N, Burmester JK, Glurich I, Rasmussen K, McPherson E,
Pauli RM, Shukla SK, et al: DLL3 as a candidate gene for vertebral
malformations. Am J Med Genet A. 140:2447–2453. 2006. View Article : Google Scholar : PubMed/NCBI
|
10
|
Chapman DL: Impaired intermediate
formation in mouse embryos expressing reduced levels of Tbx6.
Genesis. 57:e232702019. View Article : Google Scholar : PubMed/NCBI
|
11
|
Deputy NP, Kim SY, Conrey EJ and Bullard
KM: Prevalence and changes in preexisting diabetes and gestational
diabetes among women who had a live birth-United States, 2012–2016.
MMWR Morb Mortal Wkly Rep. 67:1201–1207. 2018. View Article : Google Scholar : PubMed/NCBI
|
12
|
Weston J, Bromley R, Jackson CF, Adab N,
Clayton-Smith J, Greenhalgh J, Hounsome J, McKay AJ, Tudur Smith C
and Marson AG: Monotherapy treatment of epilepsy in pregnancy:
Congenital malformation outcomes in the child. Cochrane Database
Syst Rev. 11:CD0102242016.PubMed/NCBI
|
13
|
Chanson P and Salenave S: Diabetes
insipidus and pregnancy. Ann Endocrinol (Paris). 77:135–138. 2016.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Génin E: Missing heritability of complex
diseases: Case solved? Hum Genet. 139:103–113. 2020. View Article : Google Scholar : PubMed/NCBI
|
15
|
Kim KS and Sappington TW: Microsatellite
data analysis for population genetics. Methods Mol Biol.
1006:271–295. 2013. View Article : Google Scholar : PubMed/NCBI
|
16
|
1000 Genomes Project Consortium, . Auton
A, Brooks LD, Durbin RM, Garrison EP, Kang HM, Korbel JO, Marchini
JL, McCarthy S, McVean GA and Abecasis GR: A global reference for
human genetic variation. Nature. 526:68–74. 2015. View Article : Google Scholar : PubMed/NCBI
|
17
|
Choi M, Scholl UI, Ji W, Liu T, Tikhonova
IR, Zumbo P, Nayir A, Bakkaloğlu A, Ozen S, Sanjad S, et al:
Genetic diagnosis by whole exome capture and massively parallel DNA
sequencing. Proc Natl Acad Sci USA. 106:19096–19101. 2009.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Xiong Y, Wang M, Zhao J, Wang L, Li X,
Zhang Z, Jia L and Han Y: SIRT3 is correlated with the malignancy
of non-small cell lung cancer. Int J Oncol. 50:903–910. 2017.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Fairley S, Lowy-Gallego E, Perry E and
Flicek P: The international genome sample resource (IGSR)
collection of open human genomic variation resources. Nucleic Acids
Res. 48(D1): D941–D947. 2020. View Article : Google Scholar : PubMed/NCBI
|
21
|
Castellani CA, Laufer BI, Melka MG, Diehl
EJ, O'Reilly RL and Singh SM: DNA methylation differences in
monozygotic twin pairs discordant for schizophrenia identifies
psychosis related genes and networks. BMC Med Genomics. 8:172015.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Giampietro PF, Raggio CL, Blank RD,
McCarty C, Broeckel U and Pickart MA: Clinical, genetic and
environmental factors associated with congenital vertebral
malformations. Mol Syndromol. 4:94–105. 2013.PubMed/NCBI
|
23
|
Liu T: Use model-based analysis of
ChIP-Seq (MACS) to analyze short reads generated by sequencing
protein-DNA interactions in embryonic stem cells. Methods Mol Biol.
1150:81–95. 2014. View Article : Google Scholar : PubMed/NCBI
|
24
|
Homans JF, Baldew VGM, Brink RC, Kruyt MC,
Schlösser TPC, Houben ML, Deeney VFX, Crowley TB, Castelein RM and
McDonald-McGinn DM: Scoliosis in association with the 22q11.2
deletion syndrome: An observational study. Arch Dis Child.
104:19–24. 2019. View Article : Google Scholar : PubMed/NCBI
|
25
|
Takeda K, Kou I, Mizumoto S, Yamada S,
Kawakami N, Nakajima M, Otomo N, Ogura Y, Miyake N, Matsumoto N, et
al: Screening of known disease genes in congenital scoliosis. Mol
Genet Genomic Med. 6:966–974. 2018. View
Article : Google Scholar : PubMed/NCBI
|
26
|
Takeda K, Kou I, Kawakami N, Iida A,
Nakajima M, Ogura Y, Imagawa E, Miyake N, Matsumoto N, Yasuhiko Y,
et al: Compound heterozygosity for null mutations and a common
hypomorphic risk haplotype in TBX6 causes congenital scoliosis. Hum
Mutat. 38:317–323. 2017. View Article : Google Scholar : PubMed/NCBI
|
27
|
Lefebvre M, Duffourd Y, Jouan T, Poe C,
Jean-Marçais N, Verloes A, St-Onge J, Riviere JB, Petit F, Pierquin
G, et al: Autosomal recessive variations of TBX6, from congenital
scoliosis to spondylocostal dysostosis. Clin Genet. 91:908–912.
2017. View Article : Google Scholar : PubMed/NCBI
|
28
|
Yabe T and Takada S: Molecular mechanism
for cyclic generation of somites: Lessons from mice and zebrafish.
Dev Growth Diffe. 58:31–42. 2016. View Article : Google Scholar
|
29
|
Jing B, Yuan J, Yin Z, Lv C, Lu S, Xiong
H, Tang H, Ye G and Shi F: Dynamic properties of the segmentation
clock mediated by microRNA. Int J Clin Exp Pathol. 8:196–206.
2015.PubMed/NCBI
|
30
|
Alsiddiky AM: An insight into early onset
of scoliosis: New update information-a review. Eur Rev Med
Pharmacol Sci. 19:2750–2765. 2015.PubMed/NCBI
|
31
|
Abe K, Takamatsu N, Ishikawa K, Tsurumi T,
Tanimoto S, Sakurai Y, Lisse TS, Imai K, Serikawa T and Mashimo T:
Novel ENU-induced mutation in Tbx6 causes dominant spondylocostal
dysostosis-like vertebral malformations in the rat. PLoS One.
10:01302312015. View Article : Google Scholar
|
32
|
Fernández-Jaén A, Suela J,
Fernández-Mayoralas DM, Fernández-Perrone AL, Wotton KR, Dietrich
S, Castellanos Mdel C, Cigudosa JC, Calleja-Pérez B and
López-Martín S: Microduplication 10q24.31 in a Spanish girl with
scoliosis and myopathy: The critical role of LBX. Am J Med Genet A
164A. 2074–2078. 2014. View Article : Google Scholar
|
33
|
Ouellet J and Odent T: Animal models for
scoliosis research: State of the art, current concepts and future
perspective applications. Eur Spine J. 22 (Suppl 2):S81–S95. 2013.
View Article : Google Scholar : PubMed/NCBI
|
34
|
McMaster MJ and McMaster ME: Prognosis for
congenital scoliosis due to a unilateral failure of vertebral
segmentation. J Bone Joint Surg Am. 95:972–979. 2013. View Article : Google Scholar : PubMed/NCBI
|
35
|
Imamichi T, Yang J, Huang da W, Sherman B
and Lempicki RA: Interleukin-27 induces interferon-inducible genes:
Analysis of gene expression profiles using Affymetrix microarray
and DAVID. Methods Mol Biol. 820:25–53. 2012. View Article : Google Scholar : PubMed/NCBI
|
36
|
Giampietro PF: Genetic aspects of
congenital and idiopathic scoliosis. Scientifica (Cairo).
2012:1523652012.PubMed/NCBI
|
37
|
Huang da W, Sherman BT and Lempicki RA:
Systematic and integrative analysis of large gene lists using DAVID
bioinformatics resources. Nat Protoc. 4:44–57. 2009. View Article : Google Scholar : PubMed/NCBI
|
38
|
Huang da W, Sherman BT and Lempicki RA:
Bioinformatics enrichment tools: Paths toward the comprehensive
functional analysis of large gene lists. Nucleic Acids Res.
37:1–13. 2009. View Article : Google Scholar : PubMed/NCBI
|
39
|
Fisch KM: Biological interpretation of
complex genomic data. Methods Mol Biol. 1908:61–71. 2019.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Punetha J, Monges S, Franchi ME, Hoffman
EP, Cirak S and Tesi-Rocha C: Exome sequencing identifies DYNC1H1
variant associated with vertebral abnormality and spinal muscular
atrophy with lower extremity predominance. Pediatr Neurol.
52:239–244. 2015. View Article : Google Scholar : PubMed/NCBI
|
41
|
McRae AF, Visscher PM, Montgomery GW and
Martin NG: Large autosomal copy-number differences within
unselected monozygotic twin pairs are rare. Twin Res Hum Genet.
18:13–18. 2015. View Article : Google Scholar : PubMed/NCBI
|
42
|
Otomo N, Mizumoto S, Lu HF, Takeda K,
Campos-Xavier B, Mittaz-Crettol L, Guo L, Takikawa K, Nakamura M,
Yamada S, et al: Identification of novel LFNG mutations in
spondylocostal dysostosis. J Hum Genet. 64:261–264. 2019.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Stamouli S, Anderlid BM, Willfors C,
Thiruvahindrapuram B, Wei J, Berggren S, Nordgren A, Scherer SW,
Lichtenstein P, Tammimies K and Bölte S: Copy number variation
analysis of 100 twin pairs enriched for neurodevelopmental
disorders. Twin Res Hum Genet. 21:1–11. 2018. View Article : Google Scholar : PubMed/NCBI
|
44
|
Wu PW, Mason KE, Durbin-Johnson BP, Salemi
M, Phinney BS, Rocke DM, Parker GJ and Rice RH: Proteomic analysis
of hair shafts from monozygotic twins: Expression profiles and
genetically variant peptides. Proteomics. 17:2017. View Article : Google Scholar
|
45
|
Tan Q, Li W and Vandin F:
Disease-concordant twins empower genetic association studies. Ann
Hum Genet. 81:20–26. 2017. View Article : Google Scholar : PubMed/NCBI
|
46
|
Watanabe M, Honda C; Osaka Twin Research
Group, ; Iwatani Y, Yorifuji S, Iso H, Kamide K, Hatazawa J, Kihara
S, Sakai N, et al: Within-pair differences of DNA methylation
levels between monozygotic twins are different between male and
female pairs. BMC Med Genomics. 9:552016. View Article : Google Scholar : PubMed/NCBI
|