1
|
Zelle BA and Boni G: Safe surgical
technique: Intramedullary nail fixation of tibial shaft fractures.
Patient Saf Surg. 9:402015. View Article : Google Scholar : PubMed/NCBI
|
2
|
Hansen ST and Winquist RA: Closed
intramedullary nailing of the femur. Küntscher technique with
reaming. Clin Orthop Relat Res. 138:56–61. 1979.
|
3
|
Brookes M: Blood supply of long bones.
BMJ. 2:1064–1065. 1963. View Article : Google Scholar : PubMed/NCBI
|
4
|
Cuthbertson EM, Siris E and Gilfillan RS:
The femoral diaphyseal medullary venous system as a venous
collateral channel in the dog. J Bone Joint Surg Am. 47:965–974.
1965. View Article : Google Scholar : PubMed/NCBI
|
5
|
Pape HC and Giannoudis P: The biological
and physiological effects of intramedullary reaming. J Bone Joint
Surg Br. 89:1421–1426. 2007. View Article : Google Scholar : PubMed/NCBI
|
6
|
Wenisch S, Trinkaus K, Hild A, Hose D,
Herde K, Heiss C, Kilian O, Alt V and Schnettler R: Human reaming
debris: A source of multipotent stem cells. Bone. 36:74–83. 2005.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Choumerianou DM, Dimitriou H and Kalmanti
M: Stem cells: Promises versus limitations. Tissue Eng Part B Rev.
14:53–60. 2008. View Article : Google Scholar : PubMed/NCBI
|
8
|
Mansilla E, Marín GH, Drago H, Sturla F,
Salas E, Gardiner C, Bossi S, Lamonega R, Guzmán A, Nuñez A, et al:
Bloodstream cells phenotypically identical to human mesenchymal
bone marrow stem cells circulate in large amounts under the
influence of acute large skin damage: New evidence for their use in
regenerative medicine. Transplant Proc. 38:967–969. 2006.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Shyu WC, Lee YJ, Liu DD, Lin SZ and Li H:
Homing genes, cell therapy and stroke. Front Biosci. 11:899–907.
2006. View Article : Google Scholar : PubMed/NCBI
|
10
|
Ramírez M, Lucia A, Gómez-Gallego F,
Esteve-Lanao J, Pérez-Martínez A, Foster C, Andreu AL, Martin MA,
Madero L, Arenas J, et al: Mobilisation of mesenchymal cells into
blood in response to skeletal muscle injury. Br J Sports Med.
40:719–722. 2006. View Article : Google Scholar : PubMed/NCBI
|
11
|
Kuznetsov SA, Mankani MH, Gronthos S,
Satomura K, Bianco P and Robey PG: Circulating skeletal stem cells.
J Cell Biol. 153:1133–1140. 2001. View Article : Google Scholar : PubMed/NCBI
|
12
|
Jones E and McGonagle D: Human bone marrow
mesenchymal stem cells in vivo. Rheumatology (Oxford). 47:126–131.
2008. View Article : Google Scholar : PubMed/NCBI
|
13
|
Ponte AL, Marais E, Gallay N, Langonné A,
Delorme B, Hérault O, Charbord P and Domenech J: The in vitro
migration capacity of human bone marrow mesenchymal stem cells:
Comparison of chemokine and growth factor chemotactic activities.
Stem Cells. 25:1737–1745. 2007. View Article : Google Scholar : PubMed/NCBI
|
14
|
Ratajczak MZ and Kim C: Bioactive
sphingolipids and complement cascade as new emerging regulators of
stem cell mobilization and homing. J Stem Cell Res Ther. 1:12011.
View Article : Google Scholar
|
15
|
Ratajczak MZ: A novel view of the adult
bone marrow stem cell hierarchy and stem cell trafficking.
Leukemia. 29:776–782. 2015. View Article : Google Scholar : PubMed/NCBI
|
16
|
Tan HB, Giannoudis PV, Boxall SA,
McGonagle D and Jones E: The systemic influence of platelet-derived
growth factors on bone marrow mesenchymal stem cells in fracture
patients. BMC Med. 13:62015. View Article : Google Scholar : PubMed/NCBI
|
17
|
Antoniou KM, Papadaki HA, Soufla G,
Kastrinaki MC, Damianaki A, Koutala H, Spandidos DA and Siafakas
NM: Investigation of bone marrow mesenchymal stem cells (BM MSCs)
involvement in Idiopathic Pulmonary Fibrosis (IPF). Respir Med.
104:1535–1542. 2010. View Article : Google Scholar : PubMed/NCBI
|
18
|
Kastrinaki M-C, Sidiropoulos P, Roche S,
Ringe J, Lehmann S, Kritikos H, Vlahava VM, Delorme B, Eliopoulos
GD, Jorgensen C, et al: Functional, molecular and proteomic
characterisation of bone marrow mesenchymal stem cells in
rheumatoid arthritis. Ann Rheum Dis. 67:741–749. 2008. View Article : Google Scholar : PubMed/NCBI
|
19
|
Karagiannis K, Proklou A, Tsitoura E,
Lasithiotaki I, Kalpadaki C, Moraitaki D, Sperelakis I, Kontakis G,
Antoniou KM and Tzanakis N: Impaired mRNA expression of the
migration related chemokine receptor CXCR4 in mesenchymal stem
cells of COPD patients. Int J Inflamm. 2017:60894252017. View Article : Google Scholar
|
20
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2−ΔΔCT method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI
|
21
|
Pountos I, Jones E, Tzioupis C, McGonagle
D and Giannoudis PV: Growing bone and cartilage. The role of
mesenchymal stem cells. J Bone Joint Surg Br. 88:421–426. 2006.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Jiang Y, Jahagirdar BN, Reinhardt RL,
Schwartz RE, Keene CD, Ortiz-Gonzalez XR, Reyes M, Lenvik T, Lund
T, Blackstad M, et al: Pluripotency of mesenchymal stem cells
derived from adult marrow. Nature. 418:41–49. 2002. View Article : Google Scholar : PubMed/NCBI
|
23
|
Chen X, Armstrong MA and Li G: Mesenchymal
stem cells in immunoregulation. Immunol Cell Biol. 84:413–421.
2006. View Article : Google Scholar : PubMed/NCBI
|
24
|
Ren G, Zhang L, Zhao X, Xu G, Zhang Y,
Roberts AI, Zhao RC and Shi Y: Mesenchymal stem cell-mediated
immunosuppression occurs via concerted action of chemokines and
nitric oxide. Cell Stem Cell. 2:141–150. 2008. View Article : Google Scholar : PubMed/NCBI
|
25
|
Wang Y, Chen X, Cao W and Shi Y:
Plasticity of mesenchymal stem cells in immunomodulation:
Pathological and therapeutic implications. Nat Immunol.
15:1009–1016. 2014. View
Article : Google Scholar : PubMed/NCBI
|
26
|
Zwingenberger S, Yao Z, Jacobi A, Vater C,
Valladares RD, Li C, Nich C, Rao AJ, Christman JE, Antonios JK, et
al: Enhancement of BMP-2 induced bone regeneration by SDF-1α
mediated stem cell recruitment. Tissue Eng Part A. 20:810–818.
2014.PubMed/NCBI
|
27
|
Gibon E, Yao Z, Rao AJ, Zwingenberger S,
Batke B, Valladares R, Smith RL, Biswal S, Gambhir SS and Goodman
SB: Effect of a CCR1 receptor antagonist on systemic trafficking of
MSCs and polyethylene particle-associated bone loss. Biomaterials.
33:3632–3638. 2012. View Article : Google Scholar : PubMed/NCBI
|
28
|
Granero-Moltó F, Weis JA, Miga MI, Landis
B, Myers TJ, O'Rear L, Longobardi L, Jansen ED, Mortlock DP and
Spagnoli A: Regenerative effects of transplanted mesenchymal stem
cells in fracture healing. Stem Cells. 27:1887–1898. 2009.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Moll NM and Ransohoff RM: CXCL12 and CXCR4
in bone marrow physiology. Expert Rev Hematol. 3:315–322. 2010.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Giannoudis PV, Smith RM, Bellamy MC,
Morrison JF, Dickson RA and Guillou PJ: Stimulation of the
inflammatory system by reamed and unreamed nailing of femoral
fractures. An analysis of the second hit. J Bone Joint Surg Br.
81:356–361. 1999. View Article : Google Scholar : PubMed/NCBI
|
31
|
Claes L, Recknagel S and Ignatius A:
Fracture healing under healthy and inflammatory conditions. Nat Rev
Rheumatol. 8:133–143. 2012. View Article : Google Scholar : PubMed/NCBI
|
32
|
Gerstenfeld LC, Cullinane DM, Barnes GL,
Graves DT and Einhorn TA: Fracture healing as a post-natal
developmental process: Molecular, spatial, and temporal aspects of
its regulation. J Cell Biochem. 88:873–884. 2003. View Article : Google Scholar : PubMed/NCBI
|
33
|
Aiuti A, Webb IJ, Bleul C, Springer T and
Gutierrez-Ramos JC: The chemokine SDF-1 is a chemoattractant for
human CD34+ hematopoietic progenitor cells and provides
a new mechanism to explain the mobilization of CD34+
progenitors to peripheral blood. J Exp Med. 185:111–120. 1997.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Zlotnik A and Yoshie O: The chemokine
superfamily revisited. Immunity. 36:705–716. 2012. View Article : Google Scholar : PubMed/NCBI
|
35
|
Yellowley C: CXCL12/CXCR4 signaling and
other recruitment and homing pathways in fracture repair. Bone key
Rep. 2:3002013.
|
36
|
Mohyeldin A, Garzón-Muvdi T and
Quiñones-Hinojosa A: Oxygen in stem cell biology: A critical
component of the stem cell niche. Cell Stem Cell. 7:150–161. 2010.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Xing Z, Lu C, Hu D, Yu YY, Wang X, Colnot
C, Nakamura M, Wu Y, Miclau T and Marcucio RS: Multiple roles for
CCR2 during fracture healing. Dis Model Mech. 3:451–458. 2010.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Shirley D, Marsh D, Jordan G, McQuaid S
and Li G: Systemic recruitment of osteoblastic cells in fracture
healing. J Orthop Res. 23:1013–1021. 2005. View Article : Google Scholar : PubMed/NCBI
|
39
|
Baker N, Boyette LB and Tuan RS:
Characterization of bone marrow-derived mesenchymal stem cells in
aging. Bone. 70:37–47. 2015. View Article : Google Scholar : PubMed/NCBI
|
40
|
Rombouts WJC and Ploemacher RE: Primary
murine MSC show highly efficient homing to the bone marrow but lose
homing ability following culture. Leukemia. 17:160–170. 2003.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Wei FY, Leung KS, Li G, Qin J, Chow SK,
Huang S, Sun MH, Qin L and Cheung WH: Low intensity pulsed
ultrasound enhanced mesenchymal stem cell recruitment through
stromal derived factor-1 signaling in fracture healing. PLoS One.
9:e1067222014. View Article : Google Scholar : PubMed/NCBI
|