1
|
Narayan DS, Wood JP, Chidlow G and Casson
RJ: A review of the mechanisms of cone degeneration in retinitis
pigmentosa. Acta Ophthalmol. 94:748–754. 2016. View Article : Google Scholar : PubMed/NCBI
|
2
|
Zobor D and Zrenner E: Retinitis
pigmentosa-A review. Pathogenesis, guidelines for diagnostics and
perspectives. Ophthalmologe. 109:501–514; quiz 515. 2012.(In
German). View Article : Google Scholar : PubMed/NCBI
|
3
|
Nash BM, Wright DC, Grigg JR, Bennetts B
and Jamieson RV: Retinal dystrophies, genomic applications in
diagnosis and prospects for therapy. Transl Pediatr. 4:139–163.
2015.PubMed/NCBI
|
4
|
Bunker CH, Berson EL, Bromley WC, Hayes RP
and Roderick TH: Prevalence of retinitis pigmentosa in maine. Am J
Ophthalmol. 97:357–365. 1984. View Article : Google Scholar : PubMed/NCBI
|
5
|
Grøndahl J: Estimation of prognosis and
prevalence of retinitis pigmentosa and usher syndrome in Norway.
Clin Genet. 31:255–264. 1987. View Article : Google Scholar : PubMed/NCBI
|
6
|
Paloma E, Martinez-Mir A, Garcia-Sandoval
B, Ayuso C, Vilageliu L, Gonzàlez-Duarte R and Balcells S: Novel
homozygous mutation in the alpha subunit of the rod cGMP gated
channel (CNGA1) in two Spanish sibs affected with autosomal
recessive retinitis pigmentosa. J Med Genet. 39:E662002. View Article : Google Scholar : PubMed/NCBI
|
7
|
Daiger SP, Bowne SJ and Sullivan LS:
Perspective on genes and mutations causing retinitis pigmentosa.
Arch Ophthalmol. 125:151–158. 2007. View Article : Google Scholar : PubMed/NCBI
|
8
|
Berson EL: Retinitis pigmentosa. The
friedenwald lecture. Invest Ophthalmol Vis Sci. 34:1659–1676.
1993.PubMed/NCBI
|
9
|
Xu Y, Guan L, Shen T, Zhang J, Xiao X,
Jiang H, Li S, Yang J, Jia X, Yin Y, et al: Mutations of 60 known
causative genes in 157 families with retinitis pigmentosa based on
exome sequencing. Hum Genet. 133:1255–1271. 2014. View Article : Google Scholar : PubMed/NCBI
|
10
|
Ng SB, Buckingham KJ, Lee C, Bigham AW,
Tabor HK, Dent KM, Huff CD, Shannon PT, Jabs EW, Nickerson DA, et
al: Exome sequencing identifies the cause of a mendelian disorder.
Nat Genet. 42:30–35. 2010. View
Article : Google Scholar : PubMed/NCBI
|
11
|
Zhao F, Wu J, Xue A, Su Y, Wang X, Lu X,
Zhou Z, Qu J and Zhou X: Exome sequencing reveals CCDC111 mutation
associated with high myopia. Hum Genet. 132:913–921. 2013.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Hu YS, Song H, Li Y, Xiao ZY and Li T:
Whole-exome sequencing identifies novel mutations in genes
responsible for retinitis pigmentosa in 2 nonconsanguineous Chinese
families. Int J Ophthalmol. 12:915–923. 2019.PubMed/NCBI
|
13
|
Liu X, Wu Y, Miao Z, Zhang H, Gong B, Zhu
X, Huang L, Shi Y, Hao F, Ma S, et al: A novel deletion downstream
of the PAX6 gene identified in a Chinese family with congenital
aniridia. Ophthalmic Genet. 39:428–436. 2018. View Article : Google Scholar : PubMed/NCBI
|
14
|
Wang M, Gan D, Huang X and Xu G: Novel
compound heterozygous mutations in CNGA1in a Chinese family
affected with autosomal recessive retinitis pigmentosa by targeted
sequencing. BMC Ophthalmol. 16:1012016. View Article : Google Scholar : PubMed/NCBI
|
15
|
Zhang Q, Zulfiqar F, Riazuddin SA, Xiao X,
Ahmad Z, Riazuddin S and Hejtmancik JF: Autosomal recessive
retinitis pigmentosa in a Pakistani family mapped to CNGA1 with
identification of a novel mutation. Mol Vis. 10:884–889.
2004.PubMed/NCBI
|
16
|
Hüttl S, Michalakis S, Seeliger M, Luo DG,
Acar N, Geiger H, Hudl K, Mader R, Haverkamp S, Moser M, et al:
Impaired channel targeting and retinal degeneration in mice lacking
the cyclic nucleotide-gated channel subunit CNGB1. J Neurosci.
25:130–138. 2005. View Article : Google Scholar : PubMed/NCBI
|
17
|
Dhallan RS, Macke JP, Eddy RL, Shows TB,
Reed RR, Yau KW and Nathans J: Human rod photoreceptor cGMP-gated
channel: Amino acid sequence, gene structure, and functional
expression. J Neurosci. 12:3248–3256. 1992. View Article : Google Scholar : PubMed/NCBI
|
18
|
Pittler SJ, Lee AK, Altherr MR, Howard TA,
Seldin MF, Hurwitz RL, Wasmuth JJ and Baehr W: Primary structure
and chromosomal localization of human and mouse rod photoreceptor
cGMP-gated cation channel. J Biol Chem. 267:6257–6262.
1992.PubMed/NCBI
|
19
|
Shuart NG, Haitin Y, Camp SS, Black KD and
Zagotta WN: Molecular mechanism for 3:1 subunit stoichiometry of
rod cyclic nucleotide-gated ion channels. Nat Commun. 2:4572011.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Craven KB and Zagotta WN: CNG and HCN
channels: Two peas, one pod. Annu Rev Physiol. 68:375–401. 2006.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Fesenko EE, Kolesnikov SS and Lyubarsky
AL: Induction by cyclic GMP of cationic conductance in plasma
membrane of retinal rod outer segment. Nature. 313:310–313. 1985.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Yau KW: Phototransduction mechanism in
retinal rods and cones. The friedenwald lecture. Invest Ophthalmol
Vis Sci. 35:9–32. 1994.PubMed/NCBI
|
23
|
Dryja TP, Finn JT, Peng YW, McGee TL,
Berson EL and Yau KW: Mutations in the gene encoding the alpha
subunit of the rod cGMP-gated channel in autosomal recessive
retinitis pigmentosa. Proc Natl Acad Sci USA. 92:10177–10181. 1995.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Tosi J, Davis RJ, Wang NK, Naumann M, Lin
CS and Tsang SH: shRNA knockdown of guanylate cyclase 2e or cyclic
nucleotide gated channel alpha 1 increases photoreceptor survival
in a cGMP phosphodiesterase mouse model of retinitis pigmentosa. J
Cell Mol Med. 15:1778–1787. 2011. View Article : Google Scholar : PubMed/NCBI
|
25
|
Iwanami M, Oshikawa M, Nishida T,
Nakadomari S and Kato S: High prevalence of mutations in the EYS
gene in Japanese patients with autosomal recessive retinitis
pigmentosa. Invest Ophthalmol Vis Sci. 53:1033–1040. 2012.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Gonzalez-del Pozo M, Borrego S, Barragan
I, Pieras JI, Santoyo J, Matamala N, Naranjo B, Dopazo J and
Antiñolo G: Mutation screening of multiple genes in Spanish
patients with autosomal recessive retinitis pigmentosa by targeted
resequencing. PLoS One. 6:e278942011. View Article : Google Scholar : PubMed/NCBI
|