
Cellular senescence: A pathogenic mechanism of pelvic organ prolapse (Review)
- Authors:
- Liwei Huang
- Zhiwei Zhao
- Jirui Wen
- Wang Ling
- Yali Miao
- Jiang Wu
-
Affiliations: Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China, Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China - Published online on: July 13, 2020 https://doi.org/10.3892/mmr.2020.11339
- Pages: 2155-2162
-
Copyright: © Huang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
Iglesia CB and Smithling KR: Pelvic organ prolapse. Am Fam Physician. 96:179–185. 2017.PubMed/NCBI | |
Nygaard I, Barber MD, Burgio KL, Kenton K, Meikle S, Schaffer J, Spino C, Whitehead WE, Wu J and Brody DJ; Pelvic floor disorders network, : Prevalence of symptomatic pelvic floor disorders in US women. JAMA. 300:1311–1316. 2008. View Article : Google Scholar : PubMed/NCBI | |
Jelovsek JE, Maher C and Barber MD: Pelvic organ prolapse. Lancet. 369:1027–1038. 2007. View Article : Google Scholar : PubMed/NCBI | |
Kinman CL, Lemieux CA, Agrawal A, Gaskins JT, Meriwether KV and Francis SL: The relationship between age and pelvic organ prolapse bother. Int Urogynecol J Pelvic Floor Dysfunct. 28:751–755. 2017. View Article : Google Scholar | |
Sun B, Zhou L, Wen Y, Wang C, Baer TM, Pera RR and Chen B: Proliferative behavior of vaginal fibroblasts from women with pelvic organ prolapse. Eur J Obstet Gynecol Reprod Biol. 183:1–4. 2014. View Article : Google Scholar : PubMed/NCBI | |
Richardson AC, Lyon JB and Williams NL: A new look at pelvic relaxation. Am J Obstet Gynecol. 126:568–573. 1976. View Article : Google Scholar : PubMed/NCBI | |
Jackson SR, Avery NC, Tarlton JF, Eckford SD, Abrams P and Bailey AJ: Changes in metabolism of collagen in genitourinary prolapse. Lancet. 347:1658–1661. 1996. View Article : Google Scholar : PubMed/NCBI | |
López-Otín C, Blasco MA, Partridge L, Serrano M and Kroemer G: The hallmarks of aging. Cell. 153:1194–1217. 2013. View Article : Google Scholar : PubMed/NCBI | |
Tigges J, Krutmann J, Fritsche E, Haendeler J, Schaal H, Fischer JW, Kalfalah F, Reinke H, Reifenberger G, Stühler K, et al: The hallmarks of fibroblast ageing. Mech Ageing Dev. 138:26–44. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kim EJ, Chung N, Park SH, Lee KH, Kim SW, Kim JY, Bai SW and Jeon MJ: Involvement of oxidative stress and mitochondrial apoptosis in the pathogenesis of pelvic organ prolapse. J Urol. 189:588–594. 2013. View Article : Google Scholar : PubMed/NCBI | |
Li BS, Guo WJ, Hong L, Liu YD, Liu C, Hong SS, Wu DB and Min J: Role of mechanical strain-activated PI3K/Akt signaling pathway in pelvic organ prolapse. Mol Med Rep. 14:243–253. 2016. View Article : Google Scholar : PubMed/NCBI | |
Tian X, Wang F, Luo Y, Ma S, Zhang N, Sun Y, You C, Tang G, Li S, Gong Y, et al: Protective role of nuclear factor-erythroid 2-related factor 2 against radiation-induced lung injury and inflammation. Front Oncol. 8:5422018. View Article : Google Scholar : PubMed/NCBI | |
Yang W, Sun Z, Yang B and Wang Q: Nrf2-knockout protects from intestinal injuries in C57BL/6J mice following abdominal irradiation with γ rays. Int J Mol Sci. 18:E16562017. View Article : Google Scholar : PubMed/NCBI | |
Møller P, Løhr M, Folkmann JK, Mikkelsen L and Loft S: Aging and oxidatively damaged nuclear DNA in animal organs. Free Radic Biol Med. 48:1275–1285. 2010. View Article : Google Scholar : PubMed/NCBI | |
Gkogkolou P and Böhm M: Advanced glycation end products: key players in skin aging? Dermatoendocrinol. 4:259–270. 2012. View Article : Google Scholar : PubMed/NCBI | |
Willett TL, Pasquale J and Grynpas MD: Collagen modifications in postmenopausal osteoporosis: Advanced glycation end products may affect bone volume, structure and quality. Curr Osteoporos Rep. 12:329–337. 2014. View Article : Google Scholar : PubMed/NCBI | |
Chen YS, Wang XJ, Feng W and Hua KQ: Advanced glycation end products decrease collagen I levels in fibroblasts from the vaginal wall of patients with POP via the RAGE, MAPK and NF-κB pathways. Int J Mol Med. 40:987–998. 2017. View Article : Google Scholar : PubMed/NCBI | |
Nunnari J and Suomalainen A: Mitochondria: In sickness and in health. Cell. 148:1145–1159. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kim SJ, Cheresh P, Jablonski RP, Williams DB and Kamp DW: The role of mitochondrial DNA in mediating alveolar epithelial cell apoptosis and pulmonary fibrosis. Int J Mol Sci. 16:21486–21519. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chen H, Detmer SA, Ewald AJ, Griffin EE, Fraser SE and Chan DC: Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J Cell Biol. 160:189–200. 2003. View Article : Google Scholar : PubMed/NCBI | |
de Brito OM and Scorrano L: Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature. 456:605–610. 2008. View Article : Google Scholar : PubMed/NCBI | |
Sebastián D, Hernández-Alvarez MI, Segalés J, Sorianello E, Muñoz JP, Sala D, Waget A, Liesa M, Paz JC, Gopalacharyulu P, et al: Mitofusin 2 (Mfn2) links mitochondrial and endoplasmic reticulum function with insulin signaling and is essential for normal glucose homeostasis. Proc Natl Acad Sci USA. 109:5523–5528. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Wang X, Zhou Y, Peng C, Chen H and Lu Y: Mitofusin2 regulates the proliferation and function of fibroblasts: The possible mechanisms underlying pelvic organ prolapse development. Mol Med Rep. 20:2859–2866. 2019.PubMed/NCBI | |
Lu Y, Chen HY, Wang XQ and Wang JX: Correlations between Mitofusin 2 expression in fibroblasts and pelvic organ prolapse: An in vitro study. Chin Med J (Engl). 130:2951–2959. 2017. View Article : Google Scholar : PubMed/NCBI | |
McHugh D and Gil J: Senescence and aging: Causes, consequences, and therapeutic avenues. J Cell Biol. 217:65–77. 2018. View Article : Google Scholar : PubMed/NCBI | |
Burton DG and Krizhanovsky V: Physiological and pathological consequences of cellular senescence. Cell Mol Life Sci. 71:4373–4386. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kirkland JL and Tchkonia T: Cellular senescence: A translational perspective. EBioMedicine. 21:21–28. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chen B and Yeh J: Alterations in connective tissue metabolism in stress incontinence and prolapse. J Urol. 186:1768–1772. 2011. View Article : Google Scholar : PubMed/NCBI | |
Alcorta DA, Xiong Y, Phelps D, Hannon G, Beach D and Barrett JC: Involvement of the cyclin-dependent kinase inhibitor p16 (INK4a) in replicative senescence of normal human fibroblasts. Proc Natl Acad Sci USA. 93:13742–13747. 1996. View Article : Google Scholar : PubMed/NCBI | |
Takahashi A, Ohtani N, Yamakoshi K, Iida S, Tahara H, Nakayama K, Nakayama KI, Ide T, Saya H and Hara E: Mitogenic signalling and the p16INK4a-Rb pathway cooperate to enforce irreversible cellular senescence. Nat Cell Biol. 8:1291–1297. 2006. View Article : Google Scholar : PubMed/NCBI | |
Beauséjour CM, Krtolica A, Galimi F, Narita M, Lowe SW, Yaswen P and Campisi J: Reversal of human cellular senescence: Roles of the p53 and p16 pathways. EMBO J. 22:4212–4222. 2003. View Article : Google Scholar : PubMed/NCBI | |
Sampson N, Berger P and Zenzmaier C: Redox signaling as a therapeutic target to inhibit myofibroblast activation in degenerative fibrotic disease. BioMed Res Int. 2014:1317372014. View Article : Google Scholar : PubMed/NCBI | |
Cole EE, Leu PB, Gomelsky A, Revelo P, Shappell H, Scarpero HM and Dmochowski RR: Histopathological evaluation of the uterosacral ligament: Is this a dependable structure for pelvic reconstruction? BJU Int. 97:345–348. 2006. View Article : Google Scholar : PubMed/NCBI | |
Liu C, Wang Y, Li BS, Yang Q, Tang JM, Min J, Hong SS, Guo WJ and Hong L: Role of transforming growth factor β 1 in the pathogenesis of pelvic organ prolapse: A potential therapeutic target. Int J Mol Med. 40:347–356. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yamamoto K, Yamamoto M, Akazawa K, Tajima S, Wakimoto H and Aoyagi M: Decrease in elastin gene expression and protein synthesis in fibroblasts derived from cardinal ligaments of patients with prolapsus uteri. Cell Biol Int. 21:605–611. 1997. View Article : Google Scholar : PubMed/NCBI | |
Yamamoto M, Aoyagi M, Akazawa K, Tajima S and Yamamoto K: Decrease in p53 protein in cultured cardinal ligament fibroblasts from patients with prolapsus uteri. Cell Biol Int. 22:31–40. 1998. View Article : Google Scholar : PubMed/NCBI | |
Quan T, Qin Z, Robichaud P, Voorhees JJ and Fisher GJ: CCN1 contributes to skin connective tissue aging by inducing age-associated secretory phenotype in human skin dermal fibroblasts. J Cell Commun Signal. 5:201–207. 2011. View Article : Google Scholar : PubMed/NCBI | |
Jun JI and Lau LF: The matricellular protein CCN1 induces fibroblast senescence and restricts fibrosis in cutaneous wound healing. Nat Cell Biol. 12:676–685. 2010. View Article : Google Scholar : PubMed/NCBI | |
Powers ET, Morimoto RI, Dillin A, Kelly JW and Balch WE: Biological and chemical approaches to diseases of proteostasis deficiency. Annu Rev Biochem. 78:959–991. 2009. View Article : Google Scholar : PubMed/NCBI | |
Hartl FU, Bracher A and Hayer-Hartl M: Molecular chaperones in protein folding and proteostasis. Nature. 475:324–332. 2011. View Article : Google Scholar : PubMed/NCBI | |
Brennan M, Bhatti H, Nerusu KC, Bhagavathula N, Kang S, Fisher GJ, Varani J and Voorhees JJ: Matrix metalloproteinase-1 is the major collagenolytic enzyme responsible for collagen damage in UV-irradiated human skin. Photochem Photobiol. 78:43–48. 2003. View Article : Google Scholar : PubMed/NCBI | |
Cuervo AM, Bergamini E, Brunk UT, Dröge W, Ffrench M and Terman A: Autophagy and aging: The importance of maintaining ‘clean’ cells. Autophagy. 1:131–140. 2005. View Article : Google Scholar : PubMed/NCBI | |
Mizushima N, Levine B, Cuervo AM and Klionsky DJ: Autophagy fights disease through cellular self-digestion. Nature. 451:1069–1075. 2008. View Article : Google Scholar : PubMed/NCBI | |
Bulteau AL, Moreau M, Nizard C and Friguet B: Proteasome and photoaging: The effects of UV irradiation. Ann N Y Acad Sci. 1100:280–290. 2007. View Article : Google Scholar : PubMed/NCBI | |
Pereira L, D'Alessio M, Ramirez F, Lynch JR, Sykes B, Pangilinan T and Bonadio J: Genomic organization of the sequence coding for fibrillin, the defective gene product in Marfan syndrome. Hum Mol Genet. 2:17621993. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Hu W and Ramirez F: Developmental expression of fibrillin genes suggests heterogeneity of extracellular microfibrils. J Cell Biol. 129:1165–1176. 1995. View Article : Google Scholar : PubMed/NCBI | |
Tyagi T, Alarab M, Leong Y, Lye S and Shynlova O: Local oestrogen therapy modulates extracellular matrix and immune response in the vaginal tissue of post-menopausal women with severe pelvic organ prolapse. J Cell Mol Med. 23:2907–2919. 2019. View Article : Google Scholar : PubMed/NCBI | |
Calamini B and Morimoto RI: Protein homeostasis as a therapeutic target for diseases of protein conformation. Curr Top Med Chem. 12:2623–2640. 2012. View Article : Google Scholar : PubMed/NCBI | |
Tomaru U, Takahashi S, Ishizu A, Miyatake Y, Gohda A, Suzuki S, Ono A, Ohara J, Baba T, Murata S, et al: Decreased proteasomal activity causes age-related phenotypes and promotes the development of metabolic abnormalities. Am J Pathol. 180:963–972. 2012. View Article : Google Scholar : PubMed/NCBI | |
Coolen AWM, Troost S, Mol BWJ, Roovers JPWR and Bongers MY: Primary treatment of pelvic organ prolapse: Pessary use versus prolapse surgery. Int Urogynecol J Pelvic Floor Dysfunct. 29:99–107. 2018. View Article : Google Scholar | |
Cheng J, Zhao ZW, Wen JR, Wang L, Huang LW, Yang YL, Zhao FN, Xiao JY, Fang F, Wu J, et al: Status, challenges, and future prospects of stem cell therapy in pelvic floor disorders. World J Clin Cases. 8:1400–1413. 2020. View Article : Google Scholar : PubMed/NCBI | |
Shaw AC, Joshi S, Greenwood H, Panda A and Lord JM: Aging of the innate immune system. Curr Opin Immunol. 22:507–513. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kirkwood TB: Understanding the odd science of aging. Cell. 120:437–447. 2005. View Article : Google Scholar : PubMed/NCBI | |
Jin M, Wu Y, Wang J, Ye W, Wang L, Yin P, Liu W, Pan C and Hua X: MicroRNA-29 facilitates transplantation of bone marrow-derived mesenchymal stem cells to alleviate pelvic floor dysfunction by repressing elastin. Stem Cell Res Ther. 7:1672016. View Article : Google Scholar : PubMed/NCBI | |
Jin M, Chen Y, Zhou Y, Mei Y, Liu W, Pan C and Hua X: Transplantation of bone marrow-derived mesenchymal stem cells expressing elastin alleviates pelvic floor dysfunction. Stem Cell Res Ther. 7:512016. View Article : Google Scholar : PubMed/NCBI | |
Ulrich D, Edwards SL, Su K, Tan KS, White JF, Ramshaw JA, Lo C, Rosamilia A, Werkmeister JA and Gargett CE: Human endometrial mesenchymal stem cells modulate the tissue response and mechanical behavior of polyamide mesh implants for pelvic organ prolapse repair. Tissue Eng Part A. 20:785–798. 2014.PubMed/NCBI | |
El Agha E, Kramann R, Schneider RK, Li X, Seeger W, Humphreys BD and Bellusci S: Mesenchymal stem cells in fibrotic disease. Cell Stem Cell. 21:166–177. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ohshima S: Centrosome aberrations associated with cellular senescence and p53 localization at supernumerary centrosomes. Oxid Med Cell Longev. 2012:2175942012. View Article : Google Scholar : PubMed/NCBI | |
Fumagalli M, Rossiello F, Clerici M, Barozzi S, Cittaro D, Kaplunov JM, Bucci G, Dobreva M, Matti V, Beausejour CM, et al: Telomeric DNA damage is irreparable and causes persistent DNA-damage-response activation. Nat Cell Biol. 14:355–365. 2012. View Article : Google Scholar : PubMed/NCBI | |
Garm C, Moreno-Villanueva M, Bürkle A, Petersen I, Bohr VA, Christensen K and Stevnsner T: Age and gender effects on DNA strand break repair in peripheral blood mononuclear cells. Aging Cell. 12:58–66. 2013. View Article : Google Scholar : PubMed/NCBI | |
De Cecco M, Criscione SW, Peckham EJ, Hillenmeyer S, Hamm EA, Manivannan J, Peterson AL, Kreiling JA, Neretti N and Sedivy JM: Genomes of replicatively senescent cells undergo global epigenetic changes leading to gene silencing and activation of transposable elements. Aging Cell. 12:247–256. 2013. View Article : Google Scholar : PubMed/NCBI | |
Harley CB, Futcher AB and Greider CW: Telomeres shorten during ageing of human fibroblasts. Nature. 345:458–460. 1990. View Article : Google Scholar : PubMed/NCBI | |
Sedelnikova OA, Horikawa I, Zimonjic DB, Popescu NC, Bonner WM and Barrett JC: Senescing human cells and ageing mice accumulate DNA lesions with unrepairable double-strand breaks. Nat Cell Biol. 6:168–170. 2004. View Article : Google Scholar : PubMed/NCBI | |
Hoeijmakers JH: DNA damage, aging, and cancer. N Engl J Med. 361:1475–1485. 2009. View Article : Google Scholar : PubMed/NCBI | |
Herbig U, Ferreira M, Condel L, Carey D and Sedivy JM: Cellular senescence in aging primates. Science. 311:12572006. View Article : Google Scholar : PubMed/NCBI | |
Krutmann J and Schroeder P: Role of mitochondria in photoaging of human skin: The defective powerhouse model. J Investig Dermatol Symp Proc. 14:44–49. 2009. View Article : Google Scholar : PubMed/NCBI | |
Ressler S, Bartkova J, Niederegger H, Bartek J, Scharffetter-Kochanek K, Jansen-Dürr P and Wlaschek M: p16INK4A is a robust in vivo biomarker of cellular aging in human skin. Aging Cell. 5:379–389. 2006. View Article : Google Scholar : PubMed/NCBI | |
Jeyapalan JC, Ferreira M, Sedivy JM and Herbig U: Accumulation of senescent cells in mitotic tissue of aging primates. Mech Ageing Dev. 128:36–44. 2007. View Article : Google Scholar : PubMed/NCBI | |
Kreiling JA, Tamamori-Adachi M, Sexton AN, Jeyapalan JC, Munoz-Najar U, Peterson AL, Manivannan J, Rogers ES, Pchelintsev NA, Adams PD, et al: Age-associated increase in heterochromatic marks in murine and primate tissues. Aging Cell. 10:292–304. 2011. View Article : Google Scholar : PubMed/NCBI | |
Hayflick L: The biology of human aging. Adv Pathobiol. 7:80–99. 1980.PubMed/NCBI | |
Lee HC, Yin PH, Chi CW and Wei YH: Increase in mitochondrial mass in human fibroblasts under oxidative stress and during replicative cell senescence. J Biomed Sci. 9:517–526. 2002. View Article : Google Scholar : PubMed/NCBI | |
d'Adda di Fagagna F, Reaper PM, Clay-Farrace L, Fiegler H, Carr P, Von Zglinicki T, Saretzki G, Carter NP and Jackson SP: A DNA damage checkpoint response in telomere-initiated senescence. Nature. 426:194–198. 2003. View Article : Google Scholar : PubMed/NCBI | |
Passos JF, Nelson G, Wang C, Richter T, Simillion C, Proctor CJ, Miwa S, Olijslagers S, Hallinan J, Wipat A, et al: Feedback between p21 and reactive oxygen production is necessary for cell senescence. Mol Syst Biol. 6:3472010. View Article : Google Scholar : PubMed/NCBI | |
Herbig U, Jobling WA, Chen BP, Chen DJ and Sedivy JM: Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21(CIP1), but not p16(INK4a). Mol Cell. 14:501–513. 2004. View Article : Google Scholar : PubMed/NCBI | |
Coppé JP, Desprez PY, Krtolica A and Campisi J: The senescence-associated secretory phenotype: The dark side of tumor suppression. Annu Rev Pathol. 5:99–118. 2010. View Article : Google Scholar : PubMed/NCBI | |
Narita M, Nũnez S, Heard E, Narita M, Lin AW, Hearn SA, Spector DL, Hannon GJ and Lowe SW: Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell. 113:703–716. 2003. View Article : Google Scholar : PubMed/NCBI | |
Gabriel B, Denschlag D, Göbel H, Fittkow C, Werner M, Gitsch G and Watermann D: Uterosacral ligament in postmenopausal women with or without pelvic organ prolapse. Int Urogynecol J Pelvic Floor Dysfunct. 16:475–479. 2005. View Article : Google Scholar : PubMed/NCBI | |
Bump RC, Mattiasson A, Bø K, Brubaker LP, DeLancey JO, Klarskov P, Shull BL and Smith AR: The standardization of terminology of female pelvic organ prolapse and pelvic floor dysfunction. Am J Obstet Gynecol. 175:10–17. 1996. View Article : Google Scholar : PubMed/NCBI |