1
|
Ungaro R, Mehandru S, Allen PB,
Peyrin-Biroulet L and Colombel JF: Ulcerative colitis. Lancet.
389:2695–1770. 2017. View Article : Google Scholar
|
2
|
Ananthakrishnan AN: Epidemiology and risk
factors for IBD. Nat Rev Gastroenterol Hepatol. 12:205–217. 2015.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Neurath MF: Current and emerging
therapeutic targets for IBD. Nat Rev Gastroenterol Hepatol.
14:269–278. 2017. View Article : Google Scholar : PubMed/NCBI
|
4
|
Marchesi JR, Adams DH, Fava F, Hermes GD,
Hirschfield GM, Hold G, Quraishi MN, Kinross J, Smidt H, Tuohy KM,
et al: The gut microbiota and host health: A new clinical frontier.
Gut. 65:330–339. 2016. View Article : Google Scholar : PubMed/NCBI
|
5
|
Sartor RB and Wu GD: Roles for intestinal
bacteria, viruses, and fungi in pathogenesis of inflammatory bowel
diseases and therapeutic approaches. Gastroenterology.
152:327–339.e4. 2017. View Article : Google Scholar : PubMed/NCBI
|
6
|
Shen Z, Zhu C, Quan Y, Yang J, Yuan W,
Yang Z, Wu S, Luo W, Tan B and Wang X: Insights into Roseburia
intestinalis which alleviates experimental colitis pathology by
inducing anti-inflammatory responses. J Gastroenterol Hepatol.
33:1751–1760. 2018. View Article : Google Scholar : PubMed/NCBI
|
7
|
Tan B, Luo W, Shen Z, Xiao M, Wu S, Meng
X, Wu X, Yang Z, Tian L and Wang X: Roseburia intestinalis
inhibits oncostatin M and maintains tight junction integrity in a
murine model of acute experimental colitis. Scand J Gastroenterol.
54:432–440. 2019. View Article : Google Scholar : PubMed/NCBI
|
8
|
Zhu C, Song K, Shen Z, Quan Y, Tan B, Luo
W, Wu S, Tang K, Yang Z and Wang X: Roseburia intestinalis
inhibits interleukin17 excretion and promotes regulatory T cells
differentiation in colitis. Mol Med Rep. 17:7567–7574.
2018.PubMed/NCBI
|
9
|
Kinnebrew MA, Buffie CG, Diehl GE,
Zenewicz LA, Leiner I, Hohl TM, Flavell RA, Littman DR and Pamer
EG: Interleukin 23 production by intestinal CD103(+)CD11b(+)
dendritic cells in response to bacterial flagellin enhances mucosal
innate immune defense. Immunity. 36:276–287. 2012. View Article : Google Scholar : PubMed/NCBI
|
10
|
Zhang B, Chassaing B, Shi Z, Uchiyama R,
Zhang Z, Denning TL, Crawford SE, Pruijssers AJ, Iskarpatyoti JA,
Estes MK, et al: Viral infection. Prevention and cure of rotavirus
infection via TLR5/NLRC4-mediated production of IL-22 and IL-18.
Science. 346:861–865. 2014. View Article : Google Scholar : PubMed/NCBI
|
11
|
Bergsbaken T, Fink SL and Cookson BT:
Pyroptosis: Host cell death and inflammation. Nat Rev Microbiol.
7:99–109. 2009. View Article : Google Scholar : PubMed/NCBI
|
12
|
Shi J, Gao W and Shao F: Pyroptosis:
Gasdermin-mediated programmed necrotic cell death. Trends Biochem
Sci. 42:245–254. 2017. View Article : Google Scholar : PubMed/NCBI
|
13
|
Lu A, Magupalli VG, Ruan J, Yin Q,
Atianand MK, Vos MR, Schröder GF, Fitzgerald KA, Wu H and Egelman
EH: Unified polymerization mechanism for the assembly of
ASC-dependent inflammasomes. Cell. 156:1193–1206. 2014. View Article : Google Scholar : PubMed/NCBI
|
14
|
Wree A, Eguchi A, McGeough MD, Pena CA,
Johnson CD, Canbay A, Hoffman HM and Feldstein AE: NLRP3
inflammasome activation results in hepatocyte pyroptosis, liver
inflammation, and fibrosis in mice. Hepatology. 59:898–910. 2014.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Liu T, Zhou YT, Wang LQ, Li LY, Bao Q,
Tian S, Chen MX, Chen HX, Cui J and Li CW: NOD-like receptor
family, pyrin domain containing 3 (NLRP3) contributes to
inflammation, pyroptosis, and mucin production in human airway
epithelium on rhinovirus infection. J Allergy Clin Immunol.
144:777–787 e779. 2019. View Article : Google Scholar : PubMed/NCBI
|
16
|
Thornberry NA, Bull HG, Calaycay JR,
Chapman KT, Howard AD, Kostura MJ, Miller DK, Molineaux SM, Weidner
JR, Aunins J, et al: A novel heterodimeric cysteine protease is
required for interleukin-1 beta processing in monocytes. Nature.
356:768–774. 1992. View Article : Google Scholar : PubMed/NCBI
|
17
|
Evavold CL, Ruan J, Tan Y, Xia S, Wu H and
Kagan JC: The pore-forming protein gasdermin D regulates
interleukin-1 secretion from living macrophages. Immunity.
48:35–44.e6. 2018. View Article : Google Scholar : PubMed/NCBI
|
18
|
He WT, Wan H, Hu L, Chen P, Wang X, Huang
Z, Yang ZH, Zhong CQ and Han J: Gasdermin D is an executor of
pyroptosis and required for interleukin-1β secretion. Cell Res.
25:1285–1298. 2015. View Article : Google Scholar : PubMed/NCBI
|
19
|
Davis EM, Zhang D, Glover SC, Stappenbeck
T, Wang SZ and Liu JJ: Inhibition of intestinal epithelial cell
pyroptosis and associated mucosal barrier defects is a potential
therapeutic mechanism of action for mesalamine in Ibd.
Gastroenterology. 156 (Suppl):S882019. View Article : Google Scholar
|
20
|
Ren TH, Zhou Y and Wu WY: Activation of
adenosine A3 receptor inhibits Nlrp3 inflammasome and pyroptosis of
colonic epithelial cells of patients with ulcerative colitis.
Gastroenterology. 156 (Suppl):S6272019. View Article : Google Scholar
|
21
|
Quan Y, Song K, Zhang Y, Zhu C, Shen Z, Wu
S, Luo W, Tan B, Yang Z and Wang X: Roseburia
intestinalis-derived flagellin is a negative regulator of
intestinal inflammation. Biochem Biophys Res Commun. 501:791–799.
2018. View Article : Google Scholar : PubMed/NCBI
|
22
|
Wirtz S, Popp V, Kindermann M, Gerlach K,
Weigmann B, Fichtner-Feigl S and Neurath MF: Chemically induced
mouse models of acute and chronic intestinal inflammation. Nat
Protoc. 12:1295–1309. 2017. View Article : Google Scholar : PubMed/NCBI
|
23
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Mangan MSJ, Olhava EJ, Roush WR, Seidel
HM, Glick GD and Latz E: Targeting the NLRP3 inflammasome in
inflammatory diseases. Nat Rev Drug Discov. 17:6882018. View Article : Google Scholar : PubMed/NCBI
|
25
|
Koelink PJ, Bloemendaal FM, Li B, Westera
L, Vogels EWM, van Roest M, Gloudemans AK, van ′t Wout AB, Korf H,
Vermeire S, et al: Anti-TNF therapy in IBD exerts its therapeutic
effect through macrophage IL-10 signalling. Gut. 69:1053–1063.
2020. View Article : Google Scholar : PubMed/NCBI
|
26
|
Na YR, Stakenborg M, Seok SH and Matteoli
G: Macrophages in intestinal inflammation and resolution: A
potential therapeutic target in IBD. Nat Rev Gastroenterol Hepatol.
16:531–543. 2019. View Article : Google Scholar : PubMed/NCBI
|
27
|
O'Neill LA, Sheedy FJ and McCoy CE:
MicroRNAs: The fine-tuners of Toll-like receptor signalling. Nat
Rev Immunol. 11:163–175. 2011. View Article : Google Scholar : PubMed/NCBI
|
28
|
Yoon SI, Kurnasov O, Natarajan V, Hong M,
Gudkov AV, Osterman AL and Wilson IA: Structural basis of
TLR5-flagellin recognition and signaling. Science. 335:859–864.
2012. View Article : Google Scholar : PubMed/NCBI
|
29
|
Atarashi K, Tanoue T, Oshima K, Suda W,
Nagano Y, Nishikawa H, Fukuda S, Saito T, Narushima S, Hase K, et
al: Treg induction by a rationally selected mixture of Clostridia
strains from the human microbiota. Nature. 500:232–236. 2013.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Furusawa Y, Obata Y, Fukuda S, Endo TA,
Nakato G, Takahashi D, Nakanishi Y, Uetake C, Kato K, Kato T, et
al: Commensal microbe-derived butyrate induces the differentiation
of colonic regulatory T cells. Nature. 504:446–450. 2013.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Mardini HE and Grigorian AY: Probiotic mix
VSL#3 is effective adjunctive therapy for mild to moderately active
ulcerative colitis: A meta-analysis. Inflamm Bowel Dis.
20:1562–1567. 2014. View Article : Google Scholar : PubMed/NCBI
|
32
|
Haas SL, Abbatista M, Brade J, Singer MV
and Böcker U: Interleukin-18 serum levels in inflammatory bowel
diseases: Correlation with disease activity and inflammatory
markers. Swiss Med Wkly. 139:140–145. 2009.PubMed/NCBI
|
33
|
Monteleone G, Pallone F and Caprioli F:
Investigational cytokine-targeted therapies for ulcerative colitis.
Expert Opin Investig Drugs. 22:1123–1132. 2013. View Article : Google Scholar : PubMed/NCBI
|
34
|
Xie Y, Xu M, Xiao Y, Liu Z, Jiang C, Kuang
X, Wang C, Wu H, Peng J, Li C, et al: Treponema pallidum flagellin
FlaA2 induces IL-6 secretion in THP-1 cells via the Toll-like
receptor 2 signaling pathway. Mol Immunol. 81:42–51. 2017.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Nakamoto K, Watanabe M, Sada M, Inui T,
Nakamura M, Honda K, Wada H, Ishii H and Takizawa H: Pseudomonas
aeruginosa-derived flagellin stimulates IL-6 and IL-8 production in
human bronchial epithelial cells: A potential mechanism for
progression and exacerbation of COPD. Exp Lung Res. 45:255–266.
2019. View Article : Google Scholar : PubMed/NCBI
|
36
|
Whitehead GS, Hussain S, Fannin R, Trempus
CS, Innes CL, Schurman SH, Cook DN and Garantziotis S: TLR5
activation exacerbates airway inflammation in asthma. Lung.
198:289–298. 2020. View Article : Google Scholar : PubMed/NCBI
|
37
|
Crellin NK, Garcia RV, Hadisfar O, Allan
SE, Steiner TS and Levings MK: Human CD4+ T cells express TLR5 and
its ligand flagellin enhances the suppressive capacity and
expression of FOXP3 in CD4+CD25+ T regulatory cells. J Immunol.
175:8051–8059. 2005. View Article : Google Scholar : PubMed/NCBI
|
38
|
Kim EH, Kim JH, Samivel R, Bae JS, Chung
YJ, Chung PS, Lee SE and Mo JH: Intralymphatic treatment of
flagellin-ovalbumin mixture reduced allergic inflammation in murine
model of allergic rhinitis. Allergy. 71:629–639. 2016. View Article : Google Scholar : PubMed/NCBI
|
39
|
Davis EM, Kaufmann Y, Goyne H, Claggett
BL, Jobin C and Liu JJ: Pyroptosis of intestinal epithelial cells
Is crucial to the development of mucosal barrier dysfunction and
intestinal inflammation. Gastroenterology. 152 (Suppl 1):S9672017.
View Article : Google Scholar
|
40
|
Kalla R, Ventham NT, Kennedy NA, Quintana
JF, Nimmo ER, Buck AH and Satsangi J: MicroRNAs: New players in
IBD. Gut. 64:504–517. 2015. View Article : Google Scholar : PubMed/NCBI
|
41
|
Lee S, Choi E, Cha MJ and Hwang KC:
Looking for pyroptosis-modulating miRNAs as a therapeutic target
for improving myocardium survival. Mediators Inflamm.
2015:2548712015. View Article : Google Scholar : PubMed/NCBI
|
42
|
Yang Y, Weng W, Peng J, Hong L, Yang L,
Toiyama Y, Gao R, Liu M, Yin M, Pan C, et al: Fusobacterium
nucleatum increases proliferation of colorectal cancer cells and
tumor development in mice by activating toll-like receptor 4
signaling to nuclear Factor-κB, and up-regulating expression of
MicroRNA-21. Gastroenterology. 152:851–866.e24. 2017. View Article : Google Scholar : PubMed/NCBI
|
43
|
Chassaing B, Ley RE and Gewirtz AT:
Intestinal epithelial cell toll-like receptor 5 regulates the
intestinal microbiota to prevent low-grade inflammation and
metabolic syndrome in mice. Gastroenterology. 147:1363–1377.e17.
2014. View Article : Google Scholar : PubMed/NCBI
|
44
|
Carvalho FA, Nalbantoglu I, Aitken JD,
Uchiyama R, Su Y, Doho GH, Vijay-Kumar M and Gewirtz AT: Cytosolic
flagellin receptor NLRC4 protects mice against mucosal and systemic
challenges. Mucosal Immunol. 5:288–298. 2012. View Article : Google Scholar : PubMed/NCBI
|
45
|
Hatai H, Lepelley A, Zeng W, Hayden MS and
Ghosh S: Toll-like receptor 11 (TLR11) interacts with flagellin and
profilin through disparate mechanisms. PLoS One. 11:e01489872016.
View Article : Google Scholar : PubMed/NCBI
|