1
|
Jiang J, Hao W, Li Y, Yao J, Shao Z, Li H,
Yang J and Chen S: Hydroxyapatite/regenerated silk fibroin
scaffold-enhanced osteoinductivity and osteoconductivity of bone
marrow-derived mesenchymal stromal cells. Biotechnol Lett.
35:2801–661. 2013. View Article : Google Scholar
|
2
|
Wang H, Zhi W, Lu X, Li X, Duan K, Duan R,
Mu Y and Weng J: Comparative studies on ectopic bone formation in
porous hydroxyapatite scaffolds with complementary pore structures.
Acta Biomater. 9:8413–8421. 2013. View Article : Google Scholar : PubMed/NCBI
|
3
|
Pallela R, Venkatesan J, Janapala VR and
Kim SK: Biophysicochemical evaluation of
chitosan-hydroxyapatite-marine sponge collagen composite for bone
tissue engineering. J Biomed Mater Res A. 100:486–495. 2012.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Hutmacher DW: Scaffolds in tissue
engineering bone and cartilage. Biomaterials. 21:2529–2543. 2000.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Zhou Y, Yao H, Wang J, Wang D, Liu Q and
Li Z: Greener synthesis of electrospun collagen/hydroxyapatite
composite fibers with an excellent microstructure for bone tissue
engineering. Int J Nanomedicine. 10:3203–3215. 2015.PubMed/NCBI
|
6
|
D'Agostino A, Trevisiol L, Favero V,
Gunson MJ, Pedica F, Nocini PF and Arnett GW:
Hydroxyapatite/Collagen composite is a reliable material for malar
augmentation. J Oral Maxillofac Surg. 74:1238.e1–1238.e15. 2016.
View Article : Google Scholar
|
7
|
Zhang Q, Dong H, Li Y, Zhu Y, Zeng L, Gao
H, Yuan B, Chen X and Mao C: Microgrooved polymer substrates
promote collective cell migration to accelerate fracture healing in
an in vitro model. ACS Appl Mater Interfaces. 7:23336–23345. 2015.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Ren X, Tuo Q, Tian K, Huang G, Li J, Xu T,
Lv X, Wu J, Chen Z, Weng J, et al: Enhancement of osteogenesis
using a novel porous hydroxyapatite scaffold in vivo and vitro.
Ceram Int. 44:21656–21665. 2018. View Article : Google Scholar
|
9
|
Li C, Yang L, Ren X, Lin M, Jiang X, Shen
D, Xu T, Ren J, Huang L, Qing W, et al: Groove structure of porous
hydroxyapatite scaffolds (HAS) modulates immune environment via
regulating macrophages and subsequently enhances osteogenesis. J
Biol Inorg Chem. 24:733–745. 2019. View Article : Google Scholar : PubMed/NCBI
|
10
|
Bianco P, Sacchetti B and Riminucci M:
Stem cells in skeletal physiology and endocrine diseases of bone.
Endocr Dev. 21:91–101. 2011. View Article : Google Scholar : PubMed/NCBI
|
11
|
Gong J, Meng HB, Hua J, Song ZS, He ZG,
Zhou B and Qian MP: The SDF-1/CXCR4 axis regulates migration of
transplanted bone marrow mesenchymal stem cells towards the
pancreas in rats with acute pancreatitis. Mol Med Rep. 9:1575–1582.
2014. View Article : Google Scholar : PubMed/NCBI
|
12
|
van Balkom BW, de Jong OG, Smits M,
Brummelman J, den Ouden K, de Bree PM, van Eijndhoven MA, Pegtel
DM, Stoorvogel W, Würdinger T and Verhaar MC: Endothelial cells
require miR-214 to secrete exosomes that suppress senescence and
induce angiogenesis in human and mouse endothelial cells. Blood.
121:3997–4006, S1-S15. 2013. View Article : Google Scholar : PubMed/NCBI
|
13
|
Ding R, Feng L, He L, Chen Y, Wen P, Fu Z,
Lin C, Yang S, Deng X, Zeng J and Sun G: Peroxynitrite
decomposition catalyst prevents matrix metalloproteinase-9
activation and neurovascular injury after hemoglobin injection into
the caudate nucleus of rats. Neuroscience. 297:182–193. 2015.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Karlsson M and Tang L: Surface morphology
and adsorbed proteins affect phagocyte responses to Nano-porous
alumina. J Mater Sci Mater Med. 17:1101–1111. 2006. View Article : Google Scholar : PubMed/NCBI
|
15
|
Tsaryk R, Kalbacova M, Hempel U,
Scharnweber D, Unger RE, Dieter P, Kirkpatrick CJ and Peters K:
Response of human endothelial cells to oxidative stress on Ti6Al4V
alloy. Biomaterials. 28:806–813. 2007. View Article : Google Scholar : PubMed/NCBI
|
16
|
Serrano MC, Pagani R, Peña J and Portolès
MT: Transitory oxidative stress in L929 fibroblasts cultured on
poly(epsilon-caprolactone) films. Biomaterials. 26:5827–5834. 2005.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Kaiser JP, Reinmann A and Bruinink A: The
effect of topographic characteristics on cell migration velocity.
Biomaterials. 27:5230–5241. 2006. View Article : Google Scholar : PubMed/NCBI
|
18
|
Walboomers XF, Monaghan W, Curtis AS and
Jansen JA: Attachment of fibroblasts on smooth and microgrooved
polystyrene. J Biomed Mater Res. 46:212–220. 1999. View Article : Google Scholar : PubMed/NCBI
|
19
|
Yang Y, Zhang Y, Chai R and Gu Z: Designs
of biomaterials and microenvironments for neuroengineering. Neural
Plast. 2018:10219692018. View Article : Google Scholar : PubMed/NCBI
|
20
|
Roach PL, Clifton IJ, Hensgens CM, Shibata
N, Schofield CJ, Hajdu J and Baldwin JE: Structure of isopenicillin
N synthase complexed with substrate and the mechanism of penicillin
formation. Nature. 387:827–830. 1997. View
Article : Google Scholar : PubMed/NCBI
|
21
|
Rajnicek AM, Foubister LE and McCaig CD:
Alignment of corneal and lens epithelial cells by co-operative
effects of substratum topography and DC electric fields.
Biomaterials. 29:2082–2095. 2008. View Article : Google Scholar : PubMed/NCBI
|
22
|
Feng ZQ, Lu HJ, Leach MK, Huang NP, Wang
YC, Liu CJ and Gu ZZ: The influence of type-I collagen-coated PLLA
aligned nanofibers on growth of blood outgrowth endothelial cells.
Biomed Mater. 5:0650112010. View Article : Google Scholar : PubMed/NCBI
|