1
|
Giacco F, Du X, D'Agati VD, Milne R, Sui
G, Geoffrion M and Brownlee M: Knockdown of glyoxalase 1 mimics
diabetic nephropathy in nondiabetic mice. Diabetes. 63:3008–299.
2014. View Article : Google Scholar
|
2
|
Rahimi Z: The role of renin angiotensin
aldosterone system genes in diabetic nephropathy. Can J Diabetes.
40:178–183. 2016. View Article : Google Scholar : PubMed/NCBI
|
3
|
Culver S, Li C and Siragy HM: Intrarenal
angiotensin-converting enzyme: The old and the new. Curr Hypertens
Rep. 19:802017. View Article : Google Scholar : PubMed/NCBI
|
4
|
Batlle D, Wysocki J, Soler MJ and
Ranganath K: Angiotensin-converting enzyme 2: Enhancing the
degradation of angiotensin II as a potential therapy for diabetic
nephropathy. Kidney Int. 81:520–528. 2012. View Article : Google Scholar : PubMed/NCBI
|
5
|
Chen L, Yang T, Lu DW, Zhao H, Feng YL,
Chen H, Chen DQ, Vaziri ND and Zhao YY: Central role of
dysregulation of TGF-β/Smad in CKD progression and potential
targets of its treatment. Biomed Pharmacother. 101:670–681. 2018.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Meng XM, Tang PM, Li J and Lan HY:
TGF-β/Smad signaling in renal fibrosis. Front Physiol. 6:822015.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Liu FY, Li XZ, Peng YM, Liu H and Liu YH:
Arkadia regulates TGF-β signaling during renal tubular epithelial
to mesenchymal cell transition. Kidney Int. 73:588–594. 2008.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Chen X, Wu Y, Diao Z, Han X, Li D, Ruan X
and Liu W: C1q/tumor necrosis factor-related protein-3 improves
renal fibrosis via inhibiting notch signaling pathways. J Cell
Physiol. 234:22352–22364. 2019. View Article : Google Scholar : PubMed/NCBI
|
9
|
Li X, Diao Z, Ding J, Liu R, Wang L, Huang
W and Liu W: The downregulation of SnoN expression in human renal
proximal tubule epithelial cells under high-glucose conditions is
mediated by an increase in Smurf2 expression through TGF-β1
signaling. Int J Mol Med. 37:415–422. 2016. View Article : Google Scholar : PubMed/NCBI
|
10
|
Wang LY, Diao ZL, Zheng JF, Wu YR, Zhang
QD and Liu WH: Apelin attenuates TGF-β1-induced epithelial to
mesenchymal transition via activation of PKC-ε in human renal
tubular epithelial cells. Peptides. 96:44–52. 2017. View Article : Google Scholar : PubMed/NCBI
|
11
|
Yu SM and Bonventre JV: Acute kidney
injury and progression of diabetic kidney disease. Adv Chronic
Kidney Dis. 25:166–180. 2018. View Article : Google Scholar : PubMed/NCBI
|
12
|
Williams VR and Scholey JW:
Angiotensin-converting enzyme 2 and renal disease. Curr Opin
Nephrol Hypertens. 27:35–41. 2018. View Article : Google Scholar : PubMed/NCBI
|
13
|
Koka V, Huang XR, Chung AC, Wang W, Truong
LD and Lan HY: Angiotensin II up-regulates angiotensin I-converting
enzyme (ACE), but down-regulates ACE2 via the AT1-ERK/p38 MAP
kinase pathway. Am J Pathol. 172:1174–1183. 2008. View Article : Google Scholar : PubMed/NCBI
|
14
|
Wysocki J, Ye M, Khattab AM, Fogo A,
Martin A, David NV, Kanwar Y, Osborn M and Batlle D:
Angiotensin-converting enzyme 2 amplification limited to the
circulation does not protect mice from development of diabetic
nephropathy. Kidney Int. 91:1336–1346. 2017. View Article : Google Scholar : PubMed/NCBI
|
15
|
Reich HN, Oudit GY, Penninger JM, Scholey
JW and Herzenberg AM: Decreased glomerular and tubular expression
of ACE2 in patients with type 2 diabetes and kidney disease. Kidney
Int. 74:1610–1616. 2008. View Article : Google Scholar : PubMed/NCBI
|
16
|
Liu Z, Huang XR, Chen HY, Penninger JM and
Lan HY: Loss of angiotensin-converting enzyme 2 enhances
TGF-β/Smad-mediated renal fibrosis and NF-κB-driven renal
inflammation in a mouse model of obstructive nephropathy. Lab
Invest. 92:650–661. 2012. View Article : Google Scholar : PubMed/NCBI
|
17
|
Liu Z, Huang XR, Chen HY, Fung E, Liu J
and Lan HY: Deletion of angiotensin-converting enzyme-2 promotes
hypertensive nephropathy by targeting Smad7 for ubiquitin
degradation. Hypertension. 70:822–830. 2017. View Article : Google Scholar : PubMed/NCBI
|
18
|
Lo CS, Shi Y, Chang SY, Abdo S, Chenier I,
Filep JG, Ingelfinger JR, Zhang SL and Chan JS: Overexpression of
heterogeneous nuclear ribonucleoprotein F stimulates renal Ace-2
gene expression and prevents TGF-β1-induced kidney injury in a
mouse model of diabetes. Diabetologia. 58:2443–2454. 2015.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Santos RA, Simoes e Silva AC, Maric C,
Silva DM, Machado RP, de Buhr I, Heringer-Walther S, Pinheiro SV,
Lopes MT, Bader M, et al: Angiotensin-(1–7) is an endogenous ligand
for the G protein-coupled receptor Mas. Proc Natl Acad Sci USA.
100:8258–8263. 2003. View Article : Google Scholar : PubMed/NCBI
|
20
|
Simões E Silva AC and Teixeira MM and
Teixeira MM: ACE inhibition, ACE2 and angiotensin-(1–7) axis in
kidney and cardiac inflammation and fibrosis. Pharmacol Res.
107:154–162. 2016. View Article : Google Scholar : PubMed/NCBI
|
21
|
Oudit GY, Liu GC, Zhong J, Basu R, Chow
FL, Zhou J, Loibner H, Janzek E, Schuster M, Penninger JM, et al:
Human recombinant ACE2 reduces the progression of diabetic
nephropathy. Diabetes. 59:529–538. 2010. View Article : Google Scholar : PubMed/NCBI
|
22
|
Márquez E, Riera M, Pascual J and Soler
MJ: Albumin inhibits the insulin-mediated ACE2 increase in cultured
podocytes. Am J Physiol Renal Physiol. 306:F1327–F1334. 2014.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Callera GE, Antunes TT, Correa JW, Moorman
D, Gutsol A, He Y, Cat AN, Briones AM, Montezano AC, Burns KD, et
al: Differential renal effects of candesartan at high and
ultra-high doses in diabetic mice-potential role of the
ACE2/AT2R/Mas axis. Biosci Rep. 36:362016. View Article : Google Scholar
|
24
|
Lin M, Gao P, Zhao T, He L, Li M, Li Y,
Shui H and Wu X: Calcitriol regulates angiotensin-converting enzyme
and angiotensin converting-enzyme 2 in diabetic kidney disease. Mol
Biol Rep. 43:397–406. 2016. View Article : Google Scholar : PubMed/NCBI
|
25
|
Jin HY, Chen LJ, Zhang ZZ, Xu YL, Song B,
Xu R, Oudit GY, Gao PJ, Zhu DL and Zhong JC: Deletion of
angiotensin-converting enzyme 2 exacerbates renal inflammation and
injury in apolipoprotein E-deficient mice through modulation of the
nephrin and TNF-alpha-TNFRSF1A signaling. J Transl Med. 13:2552015.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Koinuma D, Shinozaki M, Komuro A, Goto K,
Saitoh M, Hanyu A, Ebina M, Nukiwa T, Miyazawa K, Imamura T, et al:
Arkadia amplifies TGF-beta superfamily signalling through
degradation of Smad7. EMBO J. 22:6458–6470. 2003. View Article : Google Scholar : PubMed/NCBI
|
27
|
Birkou M, Chasapis CT, Marousis KD,
Loutsidou AK, Bentrop D, Lelli M, Herrmann T, Carthy JM, Episkopou
V and Spyroulias GA: A Residue Specific Insight into the Arkadia E3
Ubiquitin Ligase Activity and Conformational Plasticity. J Mol
Biol. 429:2373–2386. 2017. View Article : Google Scholar : PubMed/NCBI
|
28
|
Chen HY, Huang XR, Wang W, Li JH, Heuchel
RL, Chung AC and Lan HY: The protective role of Smad7 in diabetic
kidney disease: Mechanism and therapeutic potential. Diabetes.
60:590–601. 2011. View Article : Google Scholar : PubMed/NCBI
|
29
|
Henique C and Tharaux PL: Targeting
signaling pathways in glomerular diseases. Curr Opin Nephrol
Hypertens. 21:417–427. 2012. View Article : Google Scholar : PubMed/NCBI
|
30
|
Lai JY, Luo J, O'Connor C, Jing X, Nair V,
Ju W, Randolph A, Ben-Dov IZ, Matar RN, Briskin D, et al:
MicroRNA-21 in glomerular injury. J Am Soc Nephrol. 26:805–816.
2015. View Article : Google Scholar : PubMed/NCBI
|
31
|
Luo M, Tan X, Mu L, Luo Y, Li R, Deng X,
Chen N, Ren M, Li Y, Wang L, et al: MiRNA-21 mediates the
antiangiogenic activity of metformin through targeting PTEN and
SMAD7 expression and PI3K/AKT pathway. Sci Rep. 7:434272017.
View Article : Google Scholar : PubMed/NCBI
|
32
|
He X, Gao X, Peng L, Wang S, Zhu Y, Ma H,
Lin J and Duan DD: Atrial fibrillation induces myocardial fibrosis
through angiotensin II type 1 receptor-specific Arkadia-mediated
downregulation of Smad7. Circ Res. 108:164–175. 2011. View Article : Google Scholar : PubMed/NCBI
|
33
|
Tian Y, Liao F and Wu G, Chang D, Yang Y,
Dong X, Zhang Z, Zhang Y and Wu G: Ubiquitination and regulation of
Smad7 in the TGF-β1/Smad signaling of aristolochic acid
nephropathy. Toxicol Mech Methods. 25:645–652. 2015. View Article : Google Scholar : PubMed/NCBI
|
34
|
Elkouris M, Kontaki H, Stavropoulos A,
Antonoglou A, Nikolaou KC, Samiotaki M, Szantai E, Saviolaki D,
Brown PJ, Sideras P, et al: SET9-Mediated Regulation of TGF-β
Signaling Links Protein Methylation to Pulmonary Fibrosis. Cell
Rep. 15:2733–2744. 2016. View Article : Google Scholar : PubMed/NCBI
|
35
|
Tikellis C, Bialkowski K, Pete J, Sheehy
K, Su Q, Johnston C, Cooper ME and Thomas MC: ACE2 deficiency
modifies renoprotection afforded by ACE inhibition in experimental
diabetes. Diabetes. 57:1018–1025. 2008. View Article : Google Scholar : PubMed/NCBI
|
36
|
Yamaleyeva LM, Gilliam-Davis S, Almeida I,
Brosnihan KB, Lindsey SH and Chappell MC: Differential regulation
of circulating and renal ACE2 and ACE in hypertensive mRen2.Lewis
rats with early-onset diabetes. Am J Physiol Renal Physiol.
302:F1374–F1384. 2012. View Article : Google Scholar : PubMed/NCBI
|
37
|
Riera M, Anguiano L, Clotet S, Roca-Ho H,
Rebull M, Pascual J and Soler MJ: Paricalcitol modulates ACE2
shedding and renal ADAM17 in NOD mice beyond proteinuria. Am J
Physiol Renal Physiol. 310:F534–F546. 2016. View Article : Google Scholar : PubMed/NCBI
|
38
|
Anguiano L, Riera M, Pascual J and Soler
MJ: Circulating ACE2 in cardiovascular and kidney diseases. Curr
Med Chem. 24:3231–3241. 2017. View Article : Google Scholar : PubMed/NCBI
|
39
|
Soro-Paavonen A, Gordin D, Forsblom C,
Rosengard-Barlund M, Waden J, Thorn L, Sandholm N, Thomas MC and
Groop PH; FinnDiane Study Group, : Circulating ACE2 activity is
increased in patients with type 1 diabetes and vascular
complications. J Hypertens. 30:375–383. 2012. View Article : Google Scholar : PubMed/NCBI
|
40
|
Anguiano L, Riera M, Pascual J,
Valdivielso JM, Barrios C, Betriu A, Mojal S, Fernández E and Soler
MJ; NEFRONA study, : Circulating angiotensin-converting enzyme 2
activity in patients with chronic kidney disease without previous
history of cardiovascular disease. Nephrol Dial Transplant.
30:1176–1185. 2015. View Article : Google Scholar : PubMed/NCBI
|
41
|
Anguiano L, Riera M, Pascual J,
Valdivielso JM, Barrios C, Betriu A, Clotet S, Mojal S, Fernández E
and Soler MJ; Investigators from the NEFRONA Study, : Circulating
angiotensin converting enzyme 2 activity as a biomarker of silent
atherosclerosis in patients with chronic kidney disease.
Atherosclerosis. 253:135–143. 2016. View Article : Google Scholar : PubMed/NCBI
|
42
|
Chen YY, Zhang P, Zhou XM, Liu D, Zhong
JC, Zhang CJ, Jin LJ and Yu HM: Relationship between genetic
variants of ACE2 gene and circulating levels of ACE2 and its
metabolites. J Clin Pharm Ther. 43:189–195. 2018. View Article : Google Scholar : PubMed/NCBI
|