1
|
Kwan P and Brodie MJ: Early identification
of refractory epilepsy. N Engl J Med. 342:3504–319. 2000.
View Article : Google Scholar
|
2
|
Roggenhofer E, Santarnecchi E, Muller S,
Kherif F, Wiest R, Seeck M and Draganski B: Trajectories of brain
remodeling in temporal lobe epilepsy. J Neurol. 266:3150–3159.
2019. View Article : Google Scholar : PubMed/NCBI
|
3
|
Fiest KM, Sauro KM, Wiebe S, Patten SB,
Kwon CS, Dykeman J, Pringsheim T, Lorenzetti DL and Jetté N:
Prevalence and incidence of epilepsy: A systematic review and
meta-analysis of international studies. Neurology. 88:296–303.
2017. View Article : Google Scholar : PubMed/NCBI
|
4
|
Engel J Jr; International League Against
Epilepsy (ILAE), : A proposed diagnostic scheme for people with
epileptic seizures and with epilepsy: Report of the ILAE task force
on classification and terminology. Epilepsia. 42:796–803. 2001.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Lowenstein DH: Interview: The national
institute of neurological diseases and stroke/American epilepsy
society benchmarks and research priorities for epilepsy research.
Biomark Med. 5:531–535. 2011. View Article : Google Scholar : PubMed/NCBI
|
6
|
Beghi E: The epidemiology of epilepsy.
Neuroepidemiology. 54:185–191. 2020. View Article : Google Scholar : PubMed/NCBI
|
7
|
Wahid F, Shehzad A, Khan T and Kim YY:
MicroRNAs: Synthesis, mechanism, function, and recent clinical
trials. Biochim Biophys Acta. 1803:1231–1243. 2010. View Article : Google Scholar : PubMed/NCBI
|
8
|
Witkos TM, Koscianska E and Krzyzosiak WJ:
Practical aspects of microRNA target prediction. Curr Mol Med.
11:93–109. 2011. View Article : Google Scholar : PubMed/NCBI
|
9
|
Saito T and Saetrom P: MicroRNAs-targeting
and target prediction. N Biotechnol. 27:243–249. 2010. View Article : Google Scholar : PubMed/NCBI
|
10
|
Cheng AM, Byrom M, Shelton J and Ford LP:
Antisense inhibition of human miRNAs and indications for an
involvement of miRNA in cell growth and apoptosis. Nucleic Acids
Res. 33:1290–1297. 2005. View Article : Google Scholar : PubMed/NCBI
|
11
|
Cloonan N, Wani S, Xu Q, Gu J, Lea K,
Heater S, Barbacioru C, Steptoe AL, Martin HC, Nourbakhsh E, et al:
MicroRNAs and their isomiRs function cooperatively to target common
biological pathways. Genome Biol. 12:R1262011. View Article : Google Scholar : PubMed/NCBI
|
12
|
Dar AA, Majid S, de Semir D, Nosrati M,
Bezrookove V and Kashani-Sabet M: miRNA-205 suppresses melanoma
cell proliferation and induces senescence via regulation of E2F1
protein. J Biol Chem. 286:16606–16614. 2011. View Article : Google Scholar : PubMed/NCBI
|
13
|
Kovaleva V, Mora R, Park YJ, Plass C,
Chiramel AI, Bartenschlager R, Döhner H, Stilgenbauer S, Pscherer
A, Lichter P and Seiffert M: miRNA-130a targets ATG2B and DICER1 to
inhibit autophagy and trigger killing of chronic lymphocytic
leukemia cells. Cancer Res. 72:1763–1772. 2012. View Article : Google Scholar : PubMed/NCBI
|
14
|
Mehta N and Cheng HY: Micro-managing the
circadian clock: The role of microRNAs in biological timekeeping. J
Mol Biol. 425:3609–3624. 2013. View Article : Google Scholar : PubMed/NCBI
|
15
|
Bencurova P, Baloun J, Musilova K, Radova
L, Tichy B, Pail M, Zeman M, Brichtova E, Hermanova M, Pospisilova
S, et al: MicroRNA and mesial temporal lobe epilepsy with
hippocampal sclerosis: Whole miRNome profiling of human
hippocampus. Epilepsia. 58:1782–1793. 2017. View Article : Google Scholar : PubMed/NCBI
|
16
|
Dogini DB, Avansini SH, Vieira AS and
Lopes-Cendes I: MicroRNA regulation and dysregulation in epilepsy.
Front Cell Neurosci. 7:1722013. View Article : Google Scholar : PubMed/NCBI
|
17
|
Liu DZ, Tian Y, Ander BP, Xu H, Stamova
BS, Zhan X, Turner RJ, Jickling G and Sharp FR: Brain and blood
microRNA expression profiling of ischemic stroke, intracerebral
hemorrhage, and kainate seizures. J Cereb Blood Flow Metab.
30:92–101. 2010. View Article : Google Scholar : PubMed/NCBI
|
18
|
Mckiernan RC, Jimenez-Mateos EM, Bray I,
Engel T, Brennan GP, Sano T, Michalak Z, Moran C, Delanty N,
Farrell M, et al: Reduced mature microRNA levels in association
with dicer loss in human temporal lobe epilepsy with hippocampal
sclerosis. PLoS One. 7:359212012. View Article : Google Scholar
|
19
|
Pitkanen A, Loscher W, Vezzani A, Becker
AJ, Simonato M, Lukasiuk K, Gröhn O, Bankstahl JP, Friedman A,
Aronica E, et al: Advances in the development of biomarkers for
epilepsy. Lancet Neurol. 15:843–856. 2016. View Article : Google Scholar : PubMed/NCBI
|
20
|
Song YJ, Tian XB, Zhang S, Zhang YX, Li X,
Li D, Cheng Y, Zhang JN, Kang CS and Zhao W: Temporal lobe epilepsy
induces differential expression of hippocampal miRNAs including
let-7e and miR-23a/b. Brain Res. 1387:134–140. 2011. View Article : Google Scholar : PubMed/NCBI
|
21
|
Li D, Hao S and Zhang J: Long non-coding
RNA UCA1 exerts growth modulation by miR-15a in human thyroid
cancer TPC-1 cells. Artif Cells Nanomed Biotechnol. 47:1815–1822.
2019. View Article : Google Scholar : PubMed/NCBI
|
22
|
Cui Y, Yang Y, Ren L, Yang J, Wang B, Xing
T, Chen H and Chen M: miR-15a-3p suppresses prostate cancer cell
proliferation and invasion by targeting SLC39A7 via downregulating
Wnt/β-catenin signaling pathway. Cancer Biother Radiopharm.
34:472–479. 2019. View Article : Google Scholar : PubMed/NCBI
|
23
|
Aqeilan RI, Calin GA and Croce CM: miR-15a
and miR-16-1 in cancer: Discovery, function and future
perspectives. Cell Death Differ. 17:215–220. 2010. View Article : Google Scholar : PubMed/NCBI
|
24
|
Cai CK, Zhao GY, Tian LY, Liu L, Yan K, Ma
YL, Ji ZW, Li XX, Han K, Gao J, et al: miR-15a and miR-16-1
downregulate CCND1 and induce apoptosis and cell cycle arrest in
osteosarcoma. Oncol Rep. 28:1764–1770. 2012. View Article : Google Scholar : PubMed/NCBI
|
25
|
Wang J, Yu JT and Tan L, Tian Y, Ma J, Tan
CC, Wang HF, Liu Y, Tan MS, Jiang T and Tan L: Genome-wide
circulating microRNA expression profiling indicates biomarkers for
epilepsy. Sci Rep. 5:95222015. View Article : Google Scholar : PubMed/NCBI
|
26
|
Ma Y: The Challenge of microRNA as a
biomarker of epilepsy. Curr Neuropharmacol. 16:37–42.
2018.PubMed/NCBI
|
27
|
Jacque CM, Vinner C, Kujas M, Raoul M,
Racadot J and Baumann NA: Determination of glial fibrillary acidic
protein (GFAP) in human brain tumors. J Neurol Sci. 35:147–155.
1978. View Article : Google Scholar : PubMed/NCBI
|
28
|
Venkatesh K, Srikanth L, Vengamma B,
Chandrasekhar C, Sanjeevkumar A, Mouleshwara Prasad BC and Sarma
PV: In vitro differentiation of cultured human CD34+
cells into astrocytes. Neurol India. 61:383–388. 2013. View Article : Google Scholar : PubMed/NCBI
|
29
|
Hol EM and Pekny M: Glial fibrillary
acidic protein (GFAP) and the astrocyte intermediate filament
system in diseases of the central nervous system. Curr Opin Cell
Biol. 32:121–130. 2015. View Article : Google Scholar : PubMed/NCBI
|
30
|
Storoni M, Verbeek MM, Illes Z, Marignier
R, Teunissen CE, Grabowska M, Confavreux C, Plant GT and Petzold A:
Serum GFAP levels in optic neuropathies. J Neurol Sci. 317:117–122.
2012. View Article : Google Scholar : PubMed/NCBI
|
31
|
Zhao T, Ding Y, Li M, Zhou C and Lin W:
Silencing lncRNA PVT1 inhibits activation of astrocytes and
increases BDNF expression in hippocampus tissues of rats with
epilepsy by downregulating the Wnt signaling pathway. J Cell
Physiol. Feb 25–2019.(Epub ahead of print).
|
32
|
Ahmadian SR, Ghasemi-Kasman M, Pouramir M
and Sadeghi F: Arbutin attenuates cognitive impairment and
inflammatory response in pentylenetetrazol-induced kindling model
of epilepsy. Neuropharmacology. 146:117–127. 2019. View Article : Google Scholar : PubMed/NCBI
|
33
|
Huang LG, Zou J and Lu QC: Silencing
rno-miR-155-5p in rat temporal lobe epilepsy model reduces
pathophysiological features and cell apoptosis by activating
Sestrin-3. Brain Res. 1689:109–122. 2018. View Article : Google Scholar : PubMed/NCBI
|
34
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Ng A, Tam WW, Zhang M, Ho CS, Husain SF,
McIntyre RS and Ho RC: IL-1β, IL-6, TNF-α and CRP in elderly
patients with depression or Alzheimer's disease: Systematic review
and meta-analysis. Sci Rep. 8:120502018. View Article : Google Scholar : PubMed/NCBI
|
36
|
Li Y and Kowdley KV: MicroRNAs in common
human diseases. Genomics Proteomics Bioinformatics. 10:246–253.
2012. View Article : Google Scholar : PubMed/NCBI
|
37
|
Iborra M, Bernuzzi F, Invernizzi P and
Danese S: MicroRNAs in autoimmunity and inflammatory bowel disease:
Crucial regulators in immune response. Autoimmun Rev. 11:305–314.
2012. View Article : Google Scholar : PubMed/NCBI
|
38
|
Lei H, Tang J, Li H, Zhang H, Lu C, Chen
H, Li W, Xia Y and Tang W: MiR-195 affects cell migration and cell
proliferation by down-regulating DIEXF in Hirschsprung's disease.
BMC Gastroenterol. 14:1232014. View Article : Google Scholar : PubMed/NCBI
|
39
|
Simpson LJ and Ansel KM: MicroRNA
regulation of lymphocyte tolerance and autoimmunity. J Clin Invest.
125:2242–2249. 2015. View Article : Google Scholar : PubMed/NCBI
|
40
|
Zhang B, Pan X, Cobb GP and Anderson TA:
microRNAs as oncogenes and tumor suppressors. Dev Biol. 302:1–12.
2007. View Article : Google Scholar : PubMed/NCBI
|
41
|
Hwang HW and Mendell JT: MicroRNAs in cell
proliferation, cell death, and tumorigenesis. Br J Cancer.
94:776–780. 2006. View Article : Google Scholar : PubMed/NCBI
|
42
|
Heinzelmann J, Henning B, Sanjmyatav J,
Posorski N, Steiner T, Wunderlich H, Gajda MR and Junker K:
Specific miRNA signatures are associated with metastasis and poor
prognosis in clear cell renal cell carcinoma. World J Urol.
29:367–373. 2011. View Article : Google Scholar : PubMed/NCBI
|
43
|
Fu X, Meng Z, Liang W, Tian Y, Wang X, Han
W, Lou G, Wang X, Lou F, Yen Y, et al: miR-26a enhances miRNA
biogenesis by targeting Lin28B and Zcchc11 to suppress tumor growth
and metastasis. Oncogene. 33:4296–4306. 2014. View Article : Google Scholar : PubMed/NCBI
|
44
|
Danis B, Van Rikxoort M, Kretschmann A,
Zhang J, Godard P, Andonovic L, Siegel F, Niehusmann P, Hanon E,
Delev D, et al: Differential expression of miR-184 in temporal lobe
epilepsy patients with and without hippocampal sclerosis-Influence
on microglial function. Sci Rep. 6:339432016. View Article : Google Scholar : PubMed/NCBI
|
45
|
Peng J, Omran A, Ashhab MU, Kong H, Gan N,
He F and Yin F: Expression patterns of miR-124, miR-134, miR-132,
and miR-21 in an immature rat model and children with mesial
temporal lobe epilepsy. J Mol Neurosci. 50:291–297. 2013.
View Article : Google Scholar : PubMed/NCBI
|
46
|
Li Y, Zhang B, Li W, Wang L, Yan Z, Li H,
Yao Y, Yao R, Xu K and Li Z: MiR-15a/16 regulates the growth of
myeloma cells, angiogenesis and antitumor immunity by inhibiting
Bcl-2, VEGF-A and IL-17 expression in multiple myeloma. Leuk Res.
49:73–79. 2016. View Article : Google Scholar : PubMed/NCBI
|
47
|
Chen H and Tian Y: MiR-15a-5p regulates
viability and matrix degradation of human osteoarthritis
chondrocytes via targeting VEGFA. Biosci Trends. 10:482–488. 2017.
View Article : Google Scholar : PubMed/NCBI
|
48
|
Kang W, Tong JH, Lung RW, Dong Y, Zhao J,
Liang Q, Zhang L, Pan Y, Yang W and Pang JC: Targeting of YAP1 by
microRNA-15a and microRNA-16-1 exerts tumor suppressor function in
gastric adenocarcinoma. Mol Cancer. 14:522015. View Article : Google Scholar : PubMed/NCBI
|
49
|
Liu XF, Wang RQ, Hu B, Luo MC, Zeng QM,
Zhou H, Huang K, Dong XH, Luo YB, Luo ZH and Yang H: MiR-15a
contributes abnormal immune response in myasthenia gravis by
targeting CXCL10. Clin Immunol. 164:106–113. 2016. View Article : Google Scholar : PubMed/NCBI
|
50
|
Fan B, Chen LP, Yuan YH, Xiao HN, Lv XS
and Xia ZY: MiR-15a-3p suppresses the growth and metastasis of
ovarian cancer cell by targeting twist1. Eur Rev Med Pharmacol Sci.
23:1934–1946. 2019.PubMed/NCBI
|
51
|
Lines KE, Newey PJ, Yates CJ, Stevenson M,
Dyar R, Walls GV, Bowl MR and Thakker RV: MiR-15a/miR-16-1
expression inversely correlates with cyclin D1 levels in men1
pituitary NETs. J Endocrinol. 240:41–50. 2018. View Article : Google Scholar
|
52
|
Li YJ, Zhang BY, Li WJ, Wang LJ, Yan ZL,
Li H, Yao Y, Yao R, Xu K and Li Z: MiR-15a/16 regulates the growth
of myeloma cells angiogenesis and antitumor immunity by inhibiting
Bcl-2, VEGF-A and IL-17 expression in multiple myeloma. Leuk Res.
49:73–79. 2016. View Article : Google Scholar : PubMed/NCBI
|
53
|
Dong P, Mai Y, Zhang Z, Mi L, Wu G, Chu G,
Yang G and Sun S: MiR-15a/b promote adipogenesis in porcine
pre-adipocyte via repressing FoxO1. Acta Biochim Biophys Sin
(Shanghai). 46:565–571. 2014. View Article : Google Scholar : PubMed/NCBI
|
54
|
Gao Y, Su J, Guo W, Polich ED, Magyar DP,
Xing Y, Li H, Smrt RD, Chang Q and Zhao X: Inhibition of miR-15a
promotes BDNF expression and rescues dendritic maturation deficits
in MeCP2-Deficient neurons. Stem Cells. 33:1618–1629. 2015.
View Article : Google Scholar : PubMed/NCBI
|
55
|
Isaacs A, Baker M, Wavrant-De Vrièze F and
Hutton M: Determination of the gene structure of human GFAP and
absence of coding region mutations associated with frontotemporal
dementia with parkinsonism linked to chromosome 17. Genomics.
51:152–154. 1998. View Article : Google Scholar : PubMed/NCBI
|
56
|
Reeves SA, Helman LJ, Allison A and Israel
MA: Molecular cloning and primary structure of human glial
fibrillary acidic protein. Proc Natl Acad Sci USA. 86:5178–5182.
1989. View Article : Google Scholar : PubMed/NCBI
|
57
|
Sun YN, Luo JY, Rao ZR, Lan L and Duan L:
GFAP and Fos immunoreactivity in lumbo-sacral spinal cord and
medulla oblongata after chronic colonic inflammation in rats. World
J Gastroenterol. 11:4827–4832. 2005. View Article : Google Scholar : PubMed/NCBI
|