1
|
Pihlstrom BL, Michalowicz BS and Johnson
NW: Periodontal diseases. Lancet. 366:3141–1820. 2005. View Article : Google Scholar
|
2
|
Lim JC and Mitchell CH: Inflammation,
pain, and pressure-purinergic signaling in oral tissues. J Dent
Res. 91:1103–1109. 2012. View Article : Google Scholar : PubMed/NCBI
|
3
|
Kodama T, Minabe M, Sugiyama T, Mitarai E,
Fushimi H, Kitsugi D, Tsutsumi K and Katsuki M: Guided tissue
regeneration using a collagen barrier and bone swaging technique in
noncontained infrabony defects. Int J Periodontics Restorative
Dent. 33:805–812. 2013. View Article : Google Scholar : PubMed/NCBI
|
4
|
Wise GE, Lin F and Fan W: Culture and
characterization of dental follicle cells from rat molars. Cell
Tissue Res. 267:483–492. 1992. View Article : Google Scholar : PubMed/NCBI
|
5
|
Guo W, Chen L, Gong K, Ding B, Duan Y and
Jin Y: Heterogeneous dental follicle cells and the regeneration of
complex periodontal tissues. Tissue Eng Part A. 18:459–470. 2012.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Li C, Yang X, He Y, Ye G, Li X, Zhang X,
Zhou L and Deng F: Bone morphogenetic protein-9 induces osteogenic
differentiation of rat dental follicle stem cells in P38 and ERK1/2
MAPK dependent manner. Int J Med Sci. 9:862–871. 2012. View Article : Google Scholar : PubMed/NCBI
|
7
|
Yao S, Pan F, Prpic V and Wise GE:
Differentiation of stem cells in the dental follicle. J Dent Res.
87:767–771. 2008. View Article : Google Scholar : PubMed/NCBI
|
8
|
Li X, Chen D, Jing X and Li C: Dkk1 and
TNF-alpha influence osteogenic differentiation of
adBMP9-infected-rDFCs. Oral Dis. 26:360–369. 2020. View Article : Google Scholar : PubMed/NCBI
|
9
|
Carreira AC, Alves GG, Zambuzzi WF,
Sogayar MC and Granjeiro JM: Bone Morphogenetic Proteins:
Structure, biological function and therapeutic applications. Arch
Biochem Biophys. 561:64–73. 2014. View Article : Google Scholar : PubMed/NCBI
|
10
|
Chen D, Zhao M and Mundy GR: Bone
morphogenetic proteins. Growth Factors. 22:233–241. 2004.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Cheng H, Jiang W, Phillips FM, Haydon RC,
Peng Y, Zhou L, Luu HH, An N, Breyer B, Vanichakarn P, et al:
Osteogenic activity of the fourteen types of human bone
morphogenetic proteins (BMPs). J Bone Joint Surg Am.
85-A:1544–1552. 2003. View Article : Google Scholar
|
12
|
Kang Q, Sun MH, Cheng H, Peng Y, Montag
AG, Deyrup AT, Jiang W, Luu HH, Luo J, Szatkowski JP, et al:
Characterization of the distinct orthotopic bone-forming activity
of 14 BMPs using recombinant adenovirus-mediated gene delivery.
Gene Ther. 11:1312–1320. 2004. View Article : Google Scholar : PubMed/NCBI
|
13
|
Peng Y, Kang Q, Cheng H, Li X, Sun MH,
Jiang W, Luu HH, Park JY, Haydon RC and He TC: Transcriptional
characterization of bone morphogenetic proteins (BMPs)-mediated
osteogenic signaling. J Cell Biochem. 90:1149–1165. 2003.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Nie L, Yang X, Duan L, Huang E, Zhou PF,
Luo W, Zhang Y, Zeng X, Qiu Y, Cai T, et al: The healing of
alveolar bone defects with novel bio-implants composed of
Ad-BMP9-transfected rDFCs and CHA scaffolds. Sci Rep. 7:63732017.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Kimelman Bleich N, Kallai I, Lieberman JR,
Schwarz EM, Pelled G and Gazit D: Gene therapy approaches to
regenerating bone. Adv Drug Deliver Rev. 64:1320–1330. 2012.
View Article : Google Scholar
|
16
|
Graves DT and Cochran D: The contribution
of interleukin-1 and tumor necrosis factor to periodontal tissue
destruction. J Periodontol. 74:391–401. 2003. View Article : Google Scholar : PubMed/NCBI
|
17
|
Mukai T, Otsuka F, Otani H, Yamashita M,
Takasugi K, Inagaki K, Yamamura M and Makino H: TNF-alpha inhibits
BMP-induced osteoblast differentiation through activating SAPK/JNK
signaling. Biochem Biophys Res Commun. 356:1004–1010. 2007.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Maeda K, Takahashi N and Kobayashi Y:
Roles of Wnt signals in bone resorption during physiological and
pathological states. J Mol Med (Berl). 91:15–23. 2013. View Article : Google Scholar : PubMed/NCBI
|
19
|
Qiu W, Andersen TE, Bollerslev J, Mandrup
S, Abdallah BM and Kassem M: Patients with high bone mass phenotype
exhibit enhanced osteoblast differentiation and inhibition of
adipogenesis of human mesenchymal stem cells. J Bone Miner Res.
22:1720–1731. 2007. View Article : Google Scholar : PubMed/NCBI
|
20
|
Jansen JH, Eijken M, Jahr H, Chiba H,
Verhaar JA, Van LJ and Weinans H: Stretch-induced inhibition of
Wnt/beta-catenin signaling in mineralizing osteoblasts. J Orthop
Re. 28:390–396. 2010. View Article : Google Scholar
|
21
|
Liu N, Shi HG, Zhang W and Gu B: The
crosstalk between canonical and noncanonical Wnt signaling pathway
in osteoblast differentiation of periodontal ligament stem cells in
inflammatory microenvironments. Zhonghua Kou Qiang Yi Xue Za Zhi.
51:673–679. 2016.(In Chinese). PubMed/NCBI
|
22
|
Xiang L, Chen M, He L, Cai B, Du Y, Zhang
X, Zhou C, Wang C, Mao JJ and Ling J: Wnt5a regulates dental
follicle stem/progenitor cells of the periodontium. Stem Cell Res
Ther. 5:1352014. View Article : Google Scholar : PubMed/NCBI
|
23
|
Lerner UH and Ohlsson C: The WNT system:
Background and its role in bone. J Intern Med. 277:630–649. 2015.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Salazar VS, Ohte S, Capelo LP, Gamer L and
Rosen V: Specification of osteoblast cell fate by canonical wnt
signaling requires Bmp2. Development. 143:4352–4367. 2016.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Weivoda MM, Ruan M, Hachfeld CM, Pederson
L, Howe A, Davey RA, Zajac JD, Kobayashi Y, Williams BO, Westendorf
JJ, et al: Wnt signaling inhibits osteoclast differentiation by
activating canonical and noncanonical cAMP/PKA pathways. J Bone
Miner Res. 31:65–75. 2016. View Article : Google Scholar : PubMed/NCBI
|
26
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Shtutman M, Zhurinsky J, Simcha I,
Albanese C, D'Amico M, Pestell R and Ben-Ze'ev A: The cyclin D1
gene is a target of the beta-catenin/LEF-1 pathway. Proc Natl Acad
Sci USA. 96:5522–5527. 1999. View Article : Google Scholar : PubMed/NCBI
|
28
|
Pelengaris S and Khan M: The many faces of
c-MYC. Arch Biochem Biophys. 416:129–136. 2003. View Article : Google Scholar : PubMed/NCBI
|
29
|
Tan J, Zhou L, Xue P, An Y, Luo L, Zhang
R, Wu G, Wang Y, Zhu H and Wang Q: Tumor necrosis factor-α
attenuates the osteogenic differentiation capacity of periodontal
ligament stem cells by Activating PERK Signaling. J Periodontal.
87:e159–e171. 2016. View Article : Google Scholar
|
30
|
Ding C, Ji X, Chen X, Xu Y and Zhong L:
TNF-α gene promoter polymorphisms contribute to periodontitis
susceptibility: Evidence from 46 studies. J Clin Periodontol.
41:748–759. 2014. View Article : Google Scholar : PubMed/NCBI
|
31
|
Liu X, Tan GR, Yu M, Cai X, Zhou Y, Ding
H, Xie H, Qu F, Zhang R, Lam CU, et al: The effect of tumour
necrosis factor-α on periodontal ligament stem cell differentiation
and the related signaling pathways. Curr Stem Cell Res Ther.
11:593–602. 2016. View Article : Google Scholar : PubMed/NCBI
|
32
|
Wang F, Jiang Y, Huang X, Liu Q, Zhang Y,
Luo W, Zhang F, Zhou P, Lin J and Zhang H: Pro-inflammatory
cytokine TNF-α attenuates BMP9-induced osteo/odontoblastic
differentiation of the stem cells of dental apical papilla (SCAPs).
Cell Physiol Biochem. 41:1725–1735. 2017. View Article : Google Scholar : PubMed/NCBI
|
33
|
Lacey DC, Simmons PJ, Graves SE and
Hamilton JA: Proinflammatory cytokines inhibit osteogenic
differentiation from stem cells: Implications for bone repair
during inflammation. Osteoarthri Cartilage. 17:735–742. 2009.
View Article : Google Scholar
|
34
|
Qin Z, Fang Z, Zhao L, Chen J, Li Y and
Liu G: High dose of TNF-α suppressed osteogenic differentiation of
human dental pulp stem cells by activating the Wnt/β-catenin
signaling. J Mol Histol. 46:409–420. 2015. View Article : Google Scholar : PubMed/NCBI
|
35
|
Huang RL, Yuan Y, Tu J, Zou GM and Li Q:
Opposing TNF-α/IL-1β-and BMP-2-activated MAPK signaling pathways
converge on Runx2 to regulate BMP-2-induced osteoblastic
differentiation. Cell Death Dis. 5:e11872014. View Article : Google Scholar : PubMed/NCBI
|
36
|
Jo JY, Jeong SI, Shin YM, Kang SS, Kim SE,
Jeong CM and Huh JB: Sequential delivery of BMP-2 and BMP-7 for
bone regeneration using a heparinized collagen membrane. Int J Oral
Max Surg. 44:921–928. 2015. View Article : Google Scholar
|
37
|
Cho HH, Kim YJ, Kim SJ, Kim JH, Bae YC, Ba
B and Jung JS: Endogenous Wnt signaling promotes proliferation and
suppresses osteogenic differentiation in human adipose derived
stromal cells. Tissue Eng. 12:111–121. 2006. View Article : Google Scholar : PubMed/NCBI
|
38
|
Wang Y, Li YP, Paulson C, Shao JZ, Zhang
X, Wu M and Chen W: Wnt and the Wnt signaling pathway in bone
development and disease. Front Biosci (Landmark Ed). 19:379–407.
2014. View Article : Google Scholar : PubMed/NCBI
|
39
|
Scheller EL, Chang J and Wang CY:
Wnt/beta-catenin inhibits dental pulp stem cell differentiation. J
Den Res. 87:126–30. 2008. View Article : Google Scholar
|
40
|
Kim W, Kim M and Jho EH: Wnt/beta-catenin
signalling: from plasma membrane to nucleus. Biochem J. 450:9–21.
2013. View Article : Google Scholar : PubMed/NCBI
|
41
|
Gao C, Xiao G and Hu J: Regulation of
Wnt/β-catenin signaling by posttranslational modifications. Cell
Biosci. 4:132014. View Article : Google Scholar : PubMed/NCBI
|
42
|
Tejeda-Muñoz N and Robles-Flores M:
Glycogen synthase kinase 3 in Wnt signaling pathway and cancer.
IUBMB Life. 67:914–922. 2015. View Article : Google Scholar : PubMed/NCBI
|
43
|
De A: Wnt/Ca2+ signaling pathway: A brief
overview. Acta Biochim Biophys Sin (Shanghai). 43:745–756. 2011.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Rharass T, Lemcke H, Lantow M, Kuznetsov
SA, Weiss DG and Panáková D: Ca2+-mediated mitochondrial reactive
oxygen species metabolism augments Wnt/β-catenin pathway activation
to facilitate cell differentiation. J Biol Chem. 289:27937–29951.
2014. View Article : Google Scholar : PubMed/NCBI
|
45
|
Committee for the Update of the Guide for
the Care and Use of Laboratory Animals, Institute for Laboratory
Animal Research, Division on Earth and Life Studies, National
Research Council: Guide for the Care and Use of Laboratory Animals.
The National Academies Press; Washington, DC: 1998
|