1
|
Chargé SBP and Rudnicki MA: Cellular and
molecular regulation of muscle regeneration. Physiol Rev.
84:209–238. 2004. View Article : Google Scholar : PubMed/NCBI
|
2
|
Ijuin T, Hatano N, Hosooka T and Takenawa
T: Regulation of insulin signaling in skeletal muscle by PIP3
phosphatase, SKIP, and endoplasmic reticulum molecular chaperone
glucose-regulated protein 78. Biochim Biophys Acta. 1853:3192–3201.
2015. View Article : Google Scholar : PubMed/NCBI
|
3
|
Pedersen BK and Febbraio MA: Muscles,
exercise and obesity: Skeletal muscle as a secretory organ. Nat Rev
Endocrinol. 8:457–465. 2012. View Article : Google Scholar : PubMed/NCBI
|
4
|
Krook A, Björnholm M, Galuska D, Jiang XJ,
Fahlman R, Myers MG Jr, Wallberg-Henriksson H and Zierath JR:
Characterization of signal transduction and glucose transport in
skeletal muscle from type 2 diabetic patients. Diabetes.
49:284–292. 2000. View Article : Google Scholar : PubMed/NCBI
|
5
|
Jackman RW and Kandarian SC: The molecular
basis of skeletal muscle atrophy. Am J Physiol Cell Physiol.
287:C834–C843. 2004. View Article : Google Scholar : PubMed/NCBI
|
6
|
Tisdale MJ: Loss of skeletal muscle in
cancer: biochemical mechanisms. Front Biosci. 6:D164–D174. 2001.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Buckingham M, Bajard L, Chang T, Daubas P,
Hadchouel J, Meilhac S, Montarras D, Rocancourt D and Relaix F: The
formation of skeletal muscle: From somite to limb. J Anat.
202:59–68. 2003. View Article : Google Scholar : PubMed/NCBI
|
8
|
Schiaffino S and Reggiani C: Fiber types
in mammalian skeletal muscles. Physiol Rev. 91:1447–1531. 2011.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Choe JH, Choi YM, Lee SH, Shin HG, Ryu YC,
Hong KC and Kim BC: The relation between glycogen, lactate content
and muscle fiber type composition, and their influence on
postmortem glycolytic rate and pork quality. Meat Sci. 80:355–362.
2008. View Article : Google Scholar : PubMed/NCBI
|
10
|
Wang L, Chen X, Zheng Y, Li F, Lu Z, Chen
C, Liu J, Wang Y, Peng Y, Shen Z, et al: miR-23a inhibits myogenic
differentiation through down regulation of fast myosin heavy chain
isoforms. Exp Cell Res. 318:2324–2334. 2012. View Article : Google Scholar : PubMed/NCBI
|
11
|
Buckingham M: Myogenic progenitor cells
and skeletal myogenesis in vertebrates. Curr Opin Genet Dev.
16:525–532. 2006. View Article : Google Scholar : PubMed/NCBI
|
12
|
Rudnicki MA and Jaenisch R: The MyoD
family of transcription factors and skeletal myogenesis. BioEssays.
17:203–209. 1995. View Article : Google Scholar : PubMed/NCBI
|
13
|
Lu J, McKinsey TA, Zhang CL and Olson EN:
Regulation of skeletal myogenesis by association of the MEF2
transcription factor with class II histone deacetylases. Mol Cell.
6:233–244. 2000. View Article : Google Scholar : PubMed/NCBI
|
14
|
Talarico AP: Myf5 does not induce
apoptosis in skeletal myoblasts but is regulated by oncogenic ras
expression (unpublished PhD thesis). Cleveland State University;
2009
|
15
|
Estrella NL, Desjardins CA, Nocco SE,
Clark AL, Maksimenko Y and Naya FJ: MEF2 transcription factors
regulate distinct gene programs in mammalian skeletal muscle
differentiation. J Biol Chem. 290:1256–1268. 2015. View Article : Google Scholar : PubMed/NCBI
|
16
|
te Pas MF, Soumillion A, Harders FL,
Verburg FJ, van den Bosch TJ, Galesloot P and Meuwissen TH:
Influences of myogenin genotypes on birth weight, growth rate,
carcass weight, backfat thickness, and lean weight of pigs. J Anim
Sci. 77:2352–2356. 1999. View Article : Google Scholar : PubMed/NCBI
|
17
|
Keren A, Tamir Y and Bengal E: The p38
MAPK signaling pathway: A major regulator of skeletal muscle
development. Mol Cell Endocrinol. 252:224–230. 2006. View Article : Google Scholar : PubMed/NCBI
|
18
|
Megeney LA, Kablar B, Garrett K, Anderson
JE and Rudnicki MA: MyoD is required for myogenic stem cell
function in adult skeletal muscle. Genes Dev. 10:1173–1183. 1996.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Ambros V: The functions of animal
microRNAs. Nature. 431:350–355. 2004. View Article : Google Scholar : PubMed/NCBI
|
20
|
Bartel DP: MicroRNAs: Genomics,
biogenesis, mechanism, and function. Cell. 116:281–297. 2004.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Song G, Xu G, Ji C, Shi C, Shen Y, Chen L,
Zhu L, Yang L, Zhao Y and Guo X: The role of microRNA-26b in human
adipocyte differentiation and proliferation. Gene. 533:481–487.
2014. View Article : Google Scholar : PubMed/NCBI
|
22
|
Bian H, Zhou Y, Zhou D, Zhang Y, Shang D
and Qi J: The latest progress on miR-374 and its functional
implications in physiological and pathological processes. J Cell
Mol Med. 23:3063–3076. 2019. View Article : Google Scholar : PubMed/NCBI
|
23
|
Gao Y, Lin L, Li T, Yang J and Wei Y: The
role of miRNA-223 in cancer: Function, diagnosis and therapy. Gene.
616:1–7. 2017. View Article : Google Scholar : PubMed/NCBI
|
24
|
Cheng Y, Liu X, Zhang S, Lin Y, Yang J and
Zhang C: MicroRNA-21 protects against the H(2)O(2)-induced injury
on cardiac myocytes via its target gene PDCD4. J Mol Cell Cardiol.
47:5–14. 2009. View Article : Google Scholar : PubMed/NCBI
|
25
|
Callis TE, Deng Z, Chen JF and Wang DZ:
Muscling through the microRNA world. Exp Biol Med (Maywood).
233:131–138. 2008. View Article : Google Scholar : PubMed/NCBI
|
26
|
Chen JF, Tao Y, Li J, Deng Z, Yan Z, Xiao
X and Wang DZ: microRNA-1 and microRNA-206 regulate skeletal muscle
satellite cell proliferation and differentiation by repressing
Pax7. J Cell Biol. 190:867–879. 2010. View Article : Google Scholar : PubMed/NCBI
|
27
|
Luo W, Nie Q and Zhang X: MicroRNAs
involved in skeletal muscle differentiation. J Genet Genomics.
40:107–116. 2013. View Article : Google Scholar : PubMed/NCBI
|
28
|
Russell AP, Lamon S, Boon H, Wada S,
Güller I, Brown EL, Chibalin AV, Zierath JR, Snow RJ, Stepto N, et
al: Regulation of miRNAs in human skeletal muscle following acute
endurance exercise and short-term endurance training. J Physiol.
591:4637–4653. 2013. View Article : Google Scholar : PubMed/NCBI
|
29
|
Chen JF, Mandel EM, Thomson JM, Wu Q,
Callis TE, Hammond SM, Conlon FL and Wang DZ: The role of
microRNA-1 and microRNA-133 in skeletal muscle proliferation and
differentiation. Nat Genet. 38:228–233. 2006. View Article : Google Scholar : PubMed/NCBI
|
30
|
Mi L, Li Y, Zhang Q, Zhao C, Peng Y, Yang
G and Zheng X: MicroRNA-139-5p regulates C2C12 cell myogenesis
through blocking Wnt/β-catenin signaling pathway. Biochem Cell
Biol. 93:8–15. 2015. View Article : Google Scholar : PubMed/NCBI
|
31
|
Crist CG, Montarras D, Pallafacchina G,
Rocancourt D, Cumano A, Conway SJ and Buckingham M: Muscle stem
cell behavior is modified by microRNA-27 regulation of Pax3
expression. Proc Natl Acad Sci USA. 106:13383–13387. 2009.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Ge Y, Sun Y and Chen J: IGF-II is
regulated by microRNA-125b in skeletal myogenesis. J Cell Biol.
192:69–81. 2011. View Article : Google Scholar : PubMed/NCBI
|
33
|
Huang MB, Xu H, Xie SJ, Zhou H and Qu LH:
Insulin-like growth factor-1 receptor is regulated by microRNA-133
during skeletal myogenesis. PLoS One. 6:e291732011. View Article : Google Scholar : PubMed/NCBI
|
34
|
Dong XZ, Hu Y, Liu P and Lu Y: The
research progress of lncRNA as CeRNA in gastric cancer. Chin
Pharmacol Bull. 32:1185–1188, 1189, 2016 (In Chinese).
|
35
|
Mueller AC, Cichewicz MA, Dey BK, Layer R,
Reon BJ, Gagan JR and Dutta A: MUNC, a long noncoding RNA that
facilitates the function of MyoD in skeletal myogenesis. Mol Cell
Biol. 35:498–513. 2015. View Article : Google Scholar : PubMed/NCBI
|
36
|
Kang X, Zhao Y, Van Arsdell G, Nelson SF
and Touma M: Ppp1r1b-lncRNA inhibits PRC2 at myogenic regulatory
genes to promote cardiac and skeletal muscle development in mouse
and human. RNA. 26:481–491. 2020. View Article : Google Scholar : PubMed/NCBI
|
37
|
Mercatelli N, Fittipaldi S, De Paola E,
Dimauro I, Paronetto MP, Jackson MJ and Caporossi D: miR-23-TrxR1
as a novel molecular axis in skeletal muscle differentiation. Sci
Rep. 7:72192017. View Article : Google Scholar : PubMed/NCBI
|
38
|
Mercatelli N, Fittipaldi S, Dimauro I,
Scalabrin M and Caporossi D: TrxR1/miR-23 as a novel molecular axis
acting on skeletal muscle differentation. Free Radic Biol Med.
96:S25–S26. 2016. View Article : Google Scholar
|
39
|
Morimoto Y, Kondo Y, Kataoka H, Honda Y,
Kozu R, Sakamoto J, Nakano J, Origuchi T, Yoshimura T and Okita M:
Heat treatment inhibits skeletal muscle atrophy of
glucocorticoid-induced myopathy in rats. Physiol Res. 64:897–905.
2015. View Article : Google Scholar : PubMed/NCBI
|
40
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2-ΔΔCT method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI
|
41
|
McCarthy JJ: MicroRNA-206: The skeletal
muscle-specific myomiR. Biochim Biophys Acta. 1779:682–691. 2008.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Naguibneva I, Ameyar-Zazoua M, Polesskaya
A, Ait-Si-Ali S, Groisman R, Souidi M, Cuvellier S and Harel-Bellan
A: The microRNA miR-181 targets the homeobox protein Hox-A11 during
mammalian myoblast differentiation. Nat Cell Biol. 8:278–284. 2006.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Cardinali B, Castellani L, Fasanaro P,
Basso A, Alemà S, Martelli F and Falcone G: Microrna-221 and
microrna-222 modulate differentiation and maturation of skeletal
muscle cells. PLoS One. 4:e76072009. View Article : Google Scholar : PubMed/NCBI
|
44
|
Shen H, Liu T, Fu L, Zhao S, Fan B, Cao J
and Li X: Identification of microRNAs involved in
dexamethasone-induced muscle atrophy. Mol Cell Biochem.
381:105–113. 2013. View Article : Google Scholar : PubMed/NCBI
|
45
|
Chromiak JA and Vandenburgh HH:
Glucocorticoid-induced skeletal muscle atrophy in vitro is
attenuated by mechanical stimulation. Am J Physiol.
262:C1471–C1477. 1992. View Article : Google Scholar : PubMed/NCBI
|
46
|
Sun Y, Wang G, Ji Z, Chao T, Liu Z, Wang
X, Liu G, Wu C and Wang J: Three slow skeletal muscle troponin
genes in small-tailed Han sheep (Ovis aries): Molecular cloning,
characterization and expression analysis. Mol Biol Rep.
43:999–1010. 2016. View Article : Google Scholar : PubMed/NCBI
|
47
|
Wang L, Zhao Y, Bao X, Zhu X, Kwok YK, Sun
K, Chen X, Huang Y, Jauch R, Esteban MA, et al: LncRNA Dum
interacts with Dnmts to regulate Dppa2 expression during myogenic
differentiation and muscle regeneration. Cell Res. 25:335–350.
2015. View Article : Google Scholar : PubMed/NCBI
|
48
|
Chen Z, Liu H, Yang H, Gao Y, Zhang G and
Hu J: The long noncoding RNA, TINCR, functions as a competing
endogenous RNA to regulate PDK1 expression by sponging miR-375 in
gastric cancer. OncoTargets Ther. 10:3353–3362. 2017. View Article : Google Scholar
|
49
|
Liu W, Ma C, Yang B, Yin C, Zhang B and
Xiao Y: LncRNA Gm15290 sponges miR-27b to promote PPARγ-induced fat
deposition and contribute to body weight gain in mice. Biochem
Biophys Res Commun. 493:1168–1175. 2017. View Article : Google Scholar : PubMed/NCBI
|
50
|
Abmayr SM, Balagopalan L, Galletta BJ and
Hong SJ: Cell and molecular biology of myoblast fusion. Int Rev
Cytol. 225:33–89. 2003. View Article : Google Scholar : PubMed/NCBI
|
51
|
Mayer M, Shafrir E, Kaiser N, Milholland
RJ and Rosen F: Interaction of glucocorticoid hormones with rat
skeletal muscle: Catabolic effects and hormone binding. Metabolism.
25:157–167. 1976. View Article : Google Scholar : PubMed/NCBI
|
52
|
Schwartz GK and Shah MA: Targeting the
cell cycle: A new approach to cancer therapy. J Clin Oncol.
23:9408–9421. 2005. View Article : Google Scholar : PubMed/NCBI
|
53
|
Bryant P, Zheng Q and Pumiglia K: Focal
adhesion kinase controls cellular levels of p27/Kip1 and p21/Cip1
through Skp2-dependent and -independent mechanisms. Mol Cell Biol.
26:4201–4213. 2006. View Article : Google Scholar : PubMed/NCBI
|
54
|
Alt JR, Gladden AB and Diehl JA: p21(Cip1)
Promotes cyclin D1 nuclear accumulation via direct inhibition of
nuclear export. J Biol Chem. 277:8517–8523. 2002. View Article : Google Scholar : PubMed/NCBI
|
55
|
Dupont J, Karas M and LeRoith D: The
cyclin dependent kinase inhibitor p21CIP/WAF is a positive
regulator of IGF-1-induced cell proliferation in MCF-7 human breast
cancer cells. J Biol Chem. 278:37256–37264. 2003. View Article : Google Scholar : PubMed/NCBI
|
56
|
Wang C, Chen P, Jin H, Yan X, Gan L, Li Y,
Zhou S, Chang J, Wang Y, Yang G, et al: Nidus vespae protein
inhibiting proliferation of HepG2 hepatoma cells through
extracellular signal-regulated kinase signaling pathways and
inducing G1 cell cycle arrest. Acta Biochim Biophys Sin (Shanghai).
40:970–978. 2008. View Article : Google Scholar : PubMed/NCBI
|
57
|
Xiong Y, Hannon GJ, Zhang H, Casso D,
Kobayashi R and Beach D: p21 is a universal inhibitor of cyclin
kinases. Nature. 366:701–704. 1993. View Article : Google Scholar : PubMed/NCBI
|
58
|
Zammit PS: Function of the myogenic
regulatory factors Myf5, MyoD, Myogenin and MRF4 in skeletal
muscle, satellite cells and regenerative myogenesis. Semin Cell Dev
Biol. 72:19–32. 2017. View Article : Google Scholar : PubMed/NCBI
|
59
|
Montarras D, Chelly J, Bober E, Arnold H,
Ott MO, Gros F and Pinset C: Developmental patterns in the
expression of Myf5, MyoD, myogenin, and MRF4 during myogenesis. New
Biol. 3:592–600. 1991.PubMed/NCBI
|
60
|
Braun T and Gautel M: Transcriptional
mechanisms regulating skeletal muscle differentiation, growth and
homeostasis. Nat Rev Mol Cell Biol. 12:349–361. 2011. View Article : Google Scholar : PubMed/NCBI
|
61
|
Berkes CA and Tapscott SJ: MyoD and the
transcriptional control of myogenesis. Semin Cell Dev Biol.
16:585–595. 2005. View Article : Google Scholar : PubMed/NCBI
|
62
|
Edmondson DG and Olson EN: A gene with
homology to the myc similarity region of MyoD1 is expressed during
myogenesis and is sufficient to activate the muscle differentiation
program. Genes Dev. 4:1450. 1990. View Article : Google Scholar : PubMed/NCBI
|
63
|
Cheng X, Du J, Shen L, Tan Z, Jiang D,
Jiang A, Li Q, Tang G, Jiang Y, Wang J, et al: miR-204-5p regulates
C2C12 myoblast differentiation by targeting MEF2C and ERRγ. Biomed
Pharmacother. 101:528–535. 2018. View Article : Google Scholar : PubMed/NCBI
|
64
|
Du J, Zhang P, Zhao X, He J, Xu Y, Zou Q,
Luo J, Shen L, Gu H, Tang Q, et al: MicroRNA-351-5p mediates
skeletal myogenesis by directly targeting lactamase-β and is
regulated by lnc-mg. FASEB J. 3:1911–1926. 2019. View Article : Google Scholar
|
65
|
Shen L, Chen L, Zhang S, Du J, Bai L,
Zhang Y, Jiang Y, Li X, Wang J and Zhu L: MicroRNA-27b Regulates
Mitochondria Biogenesis in Myocytes. PLoS One. 11:e01485322016.
View Article : Google Scholar : PubMed/NCBI
|
66
|
Mizunoya W, Iwamoto Y, Sato Y, Tatsumi R
and Ikeuchi Y: Cold exposure increases slow-type myosin heavy chain
1 (MyHC1) composition of soleus muscle in rats. Anim Sci J.
85:293–304. 2014. View Article : Google Scholar : PubMed/NCBI
|
67
|
Anderson DM, Anderson KM, Chang CL,
Makarewich CA, Nelson BR, McAnally JR, Kasaragod P, Shelton JM,
Liou J, Bassel-Duby R, et al: A micropeptide encoded by a putative
long noncoding RNA regulates muscle performance. Cell. 160:595–606.
2015. View Article : Google Scholar : PubMed/NCBI
|