1
|
Braun L, Sood V, Hogue S, Lieberman B and
Copley-Merriman C: High burden and unmet patient needs in chronic
kidney disease. Int J Nephrol Renovasc Dis. 5:151–163.
2012.PubMed/NCBI
|
2
|
Coresh J, Selvin E, Stevens LA, Manzi J,
Kusek JW, Eggers P, Van Lente F and Levey AS: Prevalence of chronic
kidney disease in the United States. JAMA. 298:2038–2047. 2007.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Hsu CY, Vittinghoff E, Lin F and Shlipak
MG: The incidence of end-stage renal disease is increasing faster
than the prevalence of chronic renal insufficiency. Ann Intern Med.
141:95–101. 2004. View Article : Google Scholar : PubMed/NCBI
|
4
|
Plantinga LC, Boulware LE, Coresh J,
Stevens LA, Miller ER III, Saran R, Messer KL, Levey AS and Powe
NR: Patient awareness of chronic kidney disease: Trends and
predictors. Arch Intern Med. 168:2268–2275. 2008. View Article : Google Scholar : PubMed/NCBI
|
5
|
Jha V, Garcia-Garcia G, Iseki K, Li Z,
Naicker S, Plattner B, Saran R, Wang AY and Yang CW: Chronic kidney
disease: Global dimension and perspectives. Lancet. 382:260–272.
2013. View Article : Google Scholar : PubMed/NCBI
|
6
|
Eddy AA: Overview of the cellular and
molecular basis of kidney fibrosis. Kidney Int Suppl (2011). 4:2–8.
2014. View Article : Google Scholar : PubMed/NCBI
|
7
|
Duffield JS: Cellular and molecular
mechanisms in kidney fibrosis. J Clin Invest. 124:2299–2306. 2014.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Lovisa S, Zeisberg M and Kalluri R:
Partial epithelial-to-mesenchymal transition and other new
mechanisms of kidney fibrosis. Trends Endocrinol Metab. 27:681–695.
2016. View Article : Google Scholar : PubMed/NCBI
|
9
|
LeBleu VS, Taduri G, O'Connell J, Teng Y,
Cooke VG, Woda C, Sugimoto H and Kalluri R: Origin and function of
myofibroblasts in kidney fibrosis. Nat Med. 19:1047–1053. 2013.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Nieto MA, Huang RY, Jackson RA and Thiery
JP: EMT: 2016. Cell. 166:21–45. 2016. View Article : Google Scholar : PubMed/NCBI
|
11
|
Gordon CT, Tan TY, Benko S, Fitzpatrick D,
Lyonnet S and Farlie PG: Long-range regulation at the SOX9 locus in
development and disease. J Med Genet. 46:649–656. 2009. View Article : Google Scholar : PubMed/NCBI
|
12
|
Foster JW, Dominguez-Steglich MA, Guioli
S, Kwok C, Weller PA, Stevanović M, Weissenbach J, Mansour S, Young
ID, Goodfellow PN, et al: Campomelic dysplasia and autosomal sex
reversal caused by mutations in an SRY-related gene. Nature.
372:525–530. 1994. View
Article : Google Scholar : PubMed/NCBI
|
13
|
Wagner T, Wirth J, Meyer J, Zabel B, Held
M, Zimmer J, Pasantes J, Bricarelli FD, Keutel J, Hustert E, et al:
Autosomal sex reversal and campomelic dysplasia are caused by
mutations in and around the SRY-related gene SOX9. Cell.
79:1111–1120. 1994. View Article : Google Scholar : PubMed/NCBI
|
14
|
Haldin CE and LaBonne C: SoxE factors as
multifunctional neural crest regulatory factors. Int J Biochem Cell
Biol. 42:441–444. 2010. View Article : Google Scholar : PubMed/NCBI
|
15
|
Bowen KA, Doan HQ, Zhou BP, Wang Q, Zhou
Y, Rychahou PG and Evers BM: PTEN loss induces
epithelial-mesenchymal transition in human colon cancer cells.
Anticancer Res. 29:4439–4449. 2009.PubMed/NCBI
|
16
|
Endo Y, Deonauth K, Prahalad P, Hoxter B,
Zhu Y and Byers SW: Role of Sox-9, ER81 and VE-cadherin in retinoic
acid-mediated trans-differentiation of breast cancer cells. PLoS
One. 3:e27142008. View Article : Google Scholar : PubMed/NCBI
|
17
|
Hanley KP, Oakley F, Sugden S, Wilson DI,
Mann DA and Hanley NA: Ectopic SOX9 mediates extracellular matrix
deposition characteristic of organ fibrosis. J Biol Chem.
283:14063–14071. 2008. View Article : Google Scholar : PubMed/NCBI
|
18
|
Lacraz GPA, Junker JP, Gladka MM, Molenaar
B, Scholman KT, Vigil-Garcia M, Versteeg D, de Ruiter H, Vermunt
MW, Creyghton MP, et al: Tomo-seq identifies SOX9 as a key
regulator of cardiac fibrosis during ischemic injury. Circulation.
136:1396–1409. 2017. View Article : Google Scholar : PubMed/NCBI
|
19
|
Oh CD, Lu Y, Liang S, Mori-Akiyama Y, Chen
D, de Crombrugghe B and Yasuda H: SOX9 regulates multiple genes in
chondrocytes, including genes encoding ECM proteins, ECM
modification enzymes, receptors, and transporters. PLoS One.
9:e1075772014. View Article : Google Scholar : PubMed/NCBI
|
20
|
Pritchett J, Harvey E, Athwal V, Berry A,
Rowe C, Oakley F, Moles A, Mann DA, Bobola N, Sharrocks AD, et al:
Osteopontin is a novel downstream target of SOX9 with diagnostic
implications for progression of liver fibrosis in humans.
Hepatology. 56:1108–1116. 2012. View Article : Google Scholar : PubMed/NCBI
|
21
|
Arvaniti E, Moulos P, Vakrakou A,
Chatziantoniou C, Chadjichristos C, Kavvadas P, Charonis A and
Politis PK: Whole-transcriptome analysis of UUO mouse model of
renal fibrosis reveals new molecular players in kidney diseases.
Sci Rep. 6:262352016. View Article : Google Scholar : PubMed/NCBI
|
22
|
Bennett MR, Czech KA, Arend LJ, Witte DP,
Devarajan P and Potter SS: Laser capture microdissection-microarray
analysis of focal segmental glomerulosclerosis glomeruli. Nephron
Exp Nephrol. 107:e30–e40. 2007. View Article : Google Scholar : PubMed/NCBI
|
23
|
Sumi E, Iehara N, Akiyama H, Matsubara T,
Mima A, Kanamori H, Fukatsu A, Salant DJ, Kita T, Arai H and Doi T:
SRY-related HMG box 9 regulates the expression of Col4a2 through
transactivating its enhancer element in mesangial cells. Am J
Pathol. 170:1854–1864. 2007. View Article : Google Scholar : PubMed/NCBI
|
24
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Trapnell C, Hendrickson DG, Sauvageau M,
Goff L, Rinn JL and Pachter L: Differential analysis of gene
regulation at transcript resolution with RNA-seq. Nat Biotechnol.
31:46–53. 2013. View
Article : Google Scholar : PubMed/NCBI
|
26
|
Ashburner M, Ball CA, Blake JA, Botstein
D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT,
et al: Gene ontology: Tool for the unification of biology. The gene
ontology consortium. Nat Genet. 25:25–29. 2000. View Article : Google Scholar : PubMed/NCBI
|
27
|
Kanehisa M, Goto S, Sato Y, Kawashima M,
Furumichi M and Tanabe M: Data, information, knowledge and
principle: Back to metabolism in KEGG. Nucleic Acids Res.
42((Database Issue)): D199–D205. 2014. View Article : Google Scholar : PubMed/NCBI
|
28
|
Chevalier RL, Forbes MS and Thornhill BA:
Ureteral obstruction as a model of renal interstitial fibrosis and
obstructive nephropathy. Kidney Int. 75:1145–1152. 2009. View Article : Google Scholar : PubMed/NCBI
|
29
|
Santos JC, Carrasco-Garcia E, Garcia-Puga
M, Aldaz P, Montes M, Fernandez-Reyes M, de Oliveira CC, Lawrie CH,
Araúzo-Bravo MJ, Ribeiro ML and Matheu A: SOX9 elevation acts with
canonical WNT signaling to drive gastric cancer progression. Cancer
Res. 76:6735–6746. 2016. View Article : Google Scholar : PubMed/NCBI
|
30
|
Kawai T, Yasuchika K, Ishii T, Miyauchi Y,
Kojima H, Yamaoka R, Katayama H, Yoshitoshi EY, Ogiso S, Kita S, et
al: SOX9 is a novel cancer stem cell marker surrogated by
osteopontin in human hepatocellular carcinoma. Sci Rep.
6:304892016. View Article : Google Scholar : PubMed/NCBI
|
31
|
Liu JA, Wu MH, Yan CH, Chau BK, So H, Ng
A, Chan A, Cheah KS, Briscoe J and Cheung M: Phosphorylation of
Sox9 is required for neural crest delamination and is regulated
downstream of BMP and canonical Wnt signaling. Proc Natl Acad Sci
USA. 110:2882–2887. 2013. View Article : Google Scholar : PubMed/NCBI
|
32
|
Blache P, van de Wetering M, Duluc I,
Domon C, Berta P, Freund JN, Clevers H and Jay P: SOX9 is an
intestine crypt transcription factor, is regulated by the Wnt
pathway, and represses the CDX2 and MUC2 genes. J Cell Biol.
166:37–47. 2004. View Article : Google Scholar : PubMed/NCBI
|
33
|
Ikegami D, Akiyama H, Suzuki A, Nakamura
T, Nakano T, Yoshikawa H and Tsumaki N: Sox9 sustains chondrocyte
survival and hypertrophy in part through Pik3ca-Akt pathways.
Development. 138:1507–1519. 2011. View Article : Google Scholar : PubMed/NCBI
|
34
|
Zhu Z, Dai J, Liao Y and Wang T: Sox9
protects against human lung fibroblast cell apoptosis induced by
LPS through activation of the AKT/GSK3β pathway. Biochemistry
(Mosc). 82:606–612. 2017. View Article : Google Scholar : PubMed/NCBI
|
35
|
Chaboissier MC, Kobayashi A, Vidal VI,
Lützkendorf S, van de Kant HJ, Wegner M, de Rooij DG, Behringer RR
and Schedl A: Functional analysis of Sox8 and Sox9 during sex
determination in the mouse. Development. 131:1891–1901. 2004.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Stolt CC, Lommes P, Sock E, Chaboissier
MC, Schedl A and Wegner M: The Sox9 transcription factor determines
glial fate choice in the developing spinal cord. Genes Dev.
17:1677–1689. 2003. View Article : Google Scholar : PubMed/NCBI
|
37
|
Geng F, Zhu W, Anderson RA, Leber B and
Andrews DW: Multiple post-translational modifications regulate
E-cadherin transport during apoptosis. J Cell Sci. 125:2615–2625.
2012. View Article : Google Scholar : PubMed/NCBI
|
38
|
Kumar S, Liu J, Pang P, Krautzberger AM,
Reginensi A, Akiyama H, Schedl A, Humphreys BD and McMahon AP: Sox9
activation highlights a cellular pathway of renal repair in the
acutely injured mammalian kidney. Cell Rep. 12:1325–1338. 2015.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Liu J, Kumar S, Dolzhenko E, Alvarado GF,
Guo J, Lu C, Chen Y, Li M, Dessing MC, Parvez RK, et al: Molecular
characterization of the transition from acute to chronic kidney
injury following ischemia/reperfusion. JCI Insight. 2:e947162017.
View Article : Google Scholar
|
40
|
Liu BC, Tang TT, Lv LL and Lan HY: Renal
tubule injury: A driving force toward chronic kidney disease.
Kidney Int. 93:568–579. 2018. View Article : Google Scholar : PubMed/NCBI
|
41
|
Schiessl IM: The role of
tubule-interstitial crosstalk in renal injury and recovery. Semin
Nephrol. 40:216–231. 2020. View Article : Google Scholar : PubMed/NCBI
|
42
|
Tan RJ, Zhou D and Liu Y: Signaling
crosstalk between tubular epithelial cells and interstitial
fibroblasts after kidney injury. Kidney Dis (Basel). 2:136–144.
2016. View Article : Google Scholar : PubMed/NCBI
|
43
|
Garside VC, Cullum R, Alder O, Lu DY,
Vander Werff R, Bilenky M, Zhao Y, Jones SJ, Marra MA, Underhill TM
and Hoodless PA: SOX9 modulates the expression of key transcription
factors required for heart valve development. Development.
142:4340–4350. 2015. View Article : Google Scholar : PubMed/NCBI
|
44
|
Coricor G and Serra R: TGF-β regulates
phosphorylation and stabilization of Sox9 protein in chondrocytes
through p38 and Smad dependent mechanisms. Sci Rep. 6:386162016.
View Article : Google Scholar : PubMed/NCBI
|
45
|
Wang H, He L, Ma F, Regan MM, Balk SP,
Richardson AL and Yuan X: SOX9 regulates low density lipoprotein
receptor-related protein 6 (LRP6) and T-cell factor 4 (TCF4)
expression and Wnt/β-catenin activation in breast cancer. J Biol
Chem. 288:6478–6487. 2013. View Article : Google Scholar : PubMed/NCBI
|
46
|
Ma F, Ye H, He HH, Gerrin SJ, Chen S,
Tanenbaum BA, Cai C, Sowalsky AG, He L, Wang H, et al: SOX9 drives
WNT pathway activation in prostate cancer. J Clin Invest.
126:1745–1758. 2016. View Article : Google Scholar : PubMed/NCBI
|
47
|
Wang Y, Zhou CJ and Liu Y: Wnt signaling
in kidney development and disease. Prog Mol Biol Transl Sci.
153:181–207. 2018. View Article : Google Scholar : PubMed/NCBI
|
48
|
Zong Y, Huang J, Sankarasharma D, Morikawa
T, Fukayama M, Epstein JI, Chada KK and Witte ON: Stromal
epigenetic dysregulation is sufficient to initiate mouse prostate
cancer via paracrine Wnt signaling. Proc Natl Acad Sci USA.
109:E3395–E3404. 2012. View Article : Google Scholar : PubMed/NCBI
|
49
|
Placencio VR, Sharif-Afshar AR, Li X,
Huang H, Uwamariya C, Neilson EG, Shen MM, Matusik RJ, Hayward SW
and Bhowmick NA: Stromal transforming growth factor-beta signaling
mediates prostatic response to androgen ablation by paracrine Wnt
activity. Cancer Res. 68:4709–4718. 2008. View Article : Google Scholar : PubMed/NCBI
|
50
|
Du R, Xia L, Ning X, Liu L, Sun W, Huang
C, Wang H and Sun S: Hypoxia-induced Bmi1 promotes renal tubular
epithelial cell-mesenchymal transition and renal fibrosis via
PI3K/Akt signal. Mol Biol Cell. 25:2650–2659. 2014. View Article : Google Scholar : PubMed/NCBI
|
51
|
Zeng R, Yao Y, Han M, Zhao X, Liu XC, Wei
J, Luo Y, Zhang J, Zhou J, Wang S, et al: Biliverdin reductase
mediates hypoxia-induced EMT via PI3-kinase and Akt. J Am Soc
Nephrol. 19:380–387. 2008. View Article : Google Scholar : PubMed/NCBI
|